Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / 0841558_16EA1_federico_milano_power_system_modelling_and_scripting

.pdf
Скачиваний:
73
Добавлен:
08.06.2015
Размер:
6.72 Mб
Скачать

15.1Synchronous Machine

e˙

= ( e

(x

 

 

x

 

γ

)i

 

 

+ (1

 

TAA

)v )/T

 

 

 

 

 

 

 

Td0

q

q

d

d

d

 

d

 

 

 

 

 

 

f

d0

e˙

= ( e

+ (x

q

x

γ

)i

 

)/T

 

 

 

 

 

 

 

 

d

d

 

 

q

q

q

 

 

q0

 

 

TAA

 

 

e˙

= ( e + e

(x

x + γ

)i

 

 

+

 

v )/T

 

 

 

 

q

q

 

q

 

d

d

 

 

 

d

 

d

 

 

Td0

 

f

d0

e˙

= ( e + e

+ (x

x + γ

)i

 

)/T

 

 

 

d

d

 

d

 

 

q

q

 

 

 

q

q

 

 

 

q0

 

 

 

where coe cients γd and γq are defined as follows:

 

 

=

T

 

 

 

x

(x

x

)

γ

 

 

d0

 

 

d

 

Td0 xd

 

d

 

d

d

 

 

 

 

Tq0

 

xq

 

 

 

γq =

 

 

 

 

 

(xq − xq )

T

 

 

 

x

 

 

 

 

q0

 

 

q

 

 

 

The following algebraic equations complete the model:

0= ψd + xd id − eq

0= ψq + xq iq + ed

Anderson-Fouad’s Model

331

(15.16)

(15.17)

(15.18)

The Anderson-Fouad’s model, which, apart from [10], is also reported by the majority of books on power systems, e.g., [14] and [179], is as follows:

e˙

= (

e

(x

 

 

x

)i

d

+ v )/T

(15.19)

q

 

q

d

d

 

 

f

 

d0

 

e˙

= (

e

+ (x

q

x

)i

 

)/T

 

 

 

 

d

 

d

 

 

q

q

 

q0

 

 

e˙

= (

e

+ e

(x

x )i

)/T

 

q

 

q

 

q

 

d

d

d

 

d0

 

 

= (

e

+ e

+ (x

x )i

)/T

 

 

e˙d

 

d

 

d

 

 

q

q

q

 

q0

 

and (15.15). The Anderson-Fouad’s model can be considered a simplification of the Sauer-Pai’s model. In fact, the Sauer-Pai’s model leads to the Anderson-Fouad’s one by defining:

 

 

 

 

 

eq = ψd ,

ed = −ψq

(15.20)

and assuming:

 

 

 

• γd1

≈ γq1 0.

q

 

γ

d2

d

0

 

 

 

ψ˙

in the di erential equations of e˙ .

 

γ

q2

q

0

 

d

 

 

 

ψ˙

in the di erential equations of e˙ .

 

The Anderson-Fouad’s model can be also derived from the Marconato’s model by assuming:

γd ≈ γq ≈ TAA 0

(15.21)

332

 

 

 

15

Alternate-Current Machines

 

 

 

 

 

 

 

 

 

id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(xd − xd) − γd

 

(xd − xd ) + γd

 

 

xd

 

 

 

 

 

 

 

 

 

 

 

 

+

 

eq

 

 

 

eq

ψd

1

 

 

+

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

sTd

0

+

+

sTd0

+

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TAA

 

 

TAA

 

 

 

d-axis

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

Td

0

 

 

Td

0

 

 

 

 

 

vf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q-axis

iq

 

 

 

 

 

 

 

 

 

 

(xq − xq ) − γq

 

 

(xq − xq ) + γq

 

 

 

xq

 

+

ed

+

+

 

ed

 

1

 

1

 

 

 

 

 

 

sTq0

+

 

sTq0

+

 

 

 

 

+

−ψq

Fig. 15.2 Block diagram of stator fluxes for the Marconato’s model of the synchronous machine

15.1.6Simplified Magnetic Equations

There are a variety of possible simplifications for the magnetic equations presented above. Following paragraphs only show some models presented in the literature.

Two d- and One q-Axis Model

Assuming Tq0 0 and xq ≈ xq in (15.13) leads to ed 0. Hence, (15.13) can be rewritten as:

e˙q = (−eq (xd − xd)(id − γd2ψd (1 − γd1)id + γd2eq ) + vf )/Td0

ψ˙ = (

ψ

+ e

(x

x )i

)/T

(15.22)

d

d

 

q

 

d

d

d0

 

ψ˙ = ( ψ

(x

x )i

)/T

 

 

q

q

 

q

 

q

q0

 

15.1 Synchronous Machine

333

and algebraic equations (15.15) become:

 

 

 

 

 

 

 

 

0 = ψ

+ x i

d

γ

d1

e

(1

γ

d1

)ψ

(15.23)

d

d

 

 

q

 

 

d

 

0 = ψ

+ x i

q

(1

γ

q1

)ψ

 

 

 

 

q

q

 

 

 

 

q

 

 

 

 

A second type of two d- and one q-axis model, can be obtained from (15.16) assuming only one additional circuit on the q-axis (e.g., Tq0 0) [184]. The resulting model has three magnetic state variables eq , eq and ed as follows:

e˙

= ( e

(x

d

x

γ

)i

 

+ (1

TAA

)v )/T

(15.24)

 

 

Td0

q

q

 

d

d

 

d

 

 

 

 

 

f

d0

 

e˙

= ( e

+ e

(x

x + γ

)i

 

+

 

TAA

v )/T

 

 

 

 

 

q

q

 

q

 

d

d

 

 

d

 

d

 

 

Td0

 

f

d0

 

e˙d

= (−ed + (xq − xq )iq )/Tq0

 

 

 

 

 

 

 

 

 

 

with the algebraic equations:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 = vq + raiq − eq + xd id

 

 

 

(15.25)

 

 

0 = vd + raid − ed − xq iq

 

 

 

 

Similar equations can be obtained using (15.19) or imposing γd ≈ TAA 0 in (15.24).

One d- and Two q-Axis Model

Another model presented in [184] assumes:

xd ≈ xd ≈ xq

(15.26)

which leads to a single sient and sub-transient

d-axis equation for the variable eq . Both q-axis trandynamics are used. Hence, (15.16) becomes:

e˙

= ( e

(x

 

x

)i

d

+ v )/T

 

q

q

d

d

 

 

f

 

 

d0

e˙

= ( e

+ (x

q

x

γ

)i

)/T

 

 

d

d

 

 

q

q

q

 

 

q0

e˙

= ( e + e

+ (x

x

+ γ

)i

)/T

d

d

 

d

 

q

d

 

q

 

q

q0

with the following algebraic equations:

0= vq + raiq − eq + xdid

0= vd + raid − ed − xq iq

(15.27)

(15.28)

Similar equations can be obtained using (15.19) or imposing γq 0 in (15.27).

334

15 Alternate-Current Machines

One d- and One q-Axis Model

In this model, lead-lag transfer functions are used for modelling the d- and q-axis inductances (e.g., Td0 ≈ Tq0 0). The resulting magnetic equations have only two state variables, namely eq and ed, as follows:

e˙q = (−eq (xd − xd)id + vf )/Td0 e˙d = (−ed + (xq − xq )iq )/Tq0

and the following algebraic equations:

0= vq + raiq − eq + xdid

0= vd + raid − ed − xq iq

(15.29)

(15.30)

This model can be obtained indi erently from any of the complete models (15.13), (15.16) and (15.19). This two-axis model is the highest order model on which there is substantial agreement in the literature. Actually, this model is the most commonly used in power system stability analysis because it provides the right compromise between simplicity and accuracy.

A similar fourth order model can be formulated using the sub-transient d- axis voltage ed instead of ed (e.g., Td0 ≈ Tq0 0). The di erential equations becomes:

e˙

= (

e

(x

x

)i

d

+ v )/T

(15.31)

q

 

q

d

d

 

f

d0

 

e˙ = ( e + (x

x )i

)/T

 

 

d

 

d

 

q

q

 

q

q0

 

 

and the algebraic equations:

0

= vq + raiq − eq + xdid

(15.32)

0 = vd + raid − ed − xq iq

 

One d-Axis Model

A common model used in transient stability consists in neglecting all q-axis electro-magnetic circuits, and using a lead-lag transfer function for the d- axis inductance [325, 330]. The only magnetic state variable is eq , with the following di erential equation:

e˙

 

= (

e

(x

d

x

)i

d

+ v )/T

(15.33)

 

q

 

q

 

d

 

f

d0

 

and with the algebraic equations:

0

= vq + raiq − eq + xdid

(15.34)

0 = vd + raid − xq iq

 

15.1 Synchronous Machine

335

This model is the simplest one to which an automatic voltage regulator can be connected.

Classical Model

The classical electro-mechanical model neglects all electro-magnetic dynamics. As a consequence the field voltage is substituted by a constant eq . The electrical equations are (15.11). Since in these equations, ω ≈ 1, one can also assume that the electrical power pe = ωτe ≈ τe. Hence, the electrical power pe can be written as:

pe = (vq + raiq )iq + (vd + raid)id

(15.35)

If ra 0, then pe ≈ ph. Another assumption is that and assume that xq = xd, hence the following relations between voltages and currents hold:

0

= vq + raiq − eq + xdid

(15.36)

0 = vd + raid − xdiq

 

where eq is a constant emf behind the transient reactance xd. For sake of clarity, the full classical model is given below:

˙

(15.37)

δ = Ωb(ω − 1)

ω˙ = (pm − pe − D(ω − 1))/2H

0= (vq + raiq )iq + (vd + raid)id − pe

0= vq + raiq − eq + xdid

0= vd + raid − xdiq

0= vh sin(δ − θh) − vd

0= vh cos(δ − θh) − vq

ph = vdid + vq iq qh = vq id − vdiq

In most books and software packages, it is also assumed that ra ≈ D ≈ 0, thus leading to a loss-less model. However, the property of being loss-less is not implicit in the approximation of neglecting all flux dynamics.

It is possible to define a second type of synchronous machine second-order model by assuming constant sub-transient emfs ed and eq . From (15.11) and (15.18), one obtains:

vd = ed − raid + xq iq

(15.38)

vq = eq − raiq − xd id

 

336

15 Alternate-Current Machines

This model consists in a constant emf behind the sub-transient reactance and is more precise than the classical one in the first instants after a disturbance. Also in this case, it is common practice to assume ra ≈ D ≈ 0 [184].

15.1.7Synchronous Machine Model Taxonomy

To complete the machine model taxonomy, Table 15.2 indicates the dynamic order, the equations and the state variables for all models described in previous subsections.

Table 15.3 depicts a quick reference for the usage of time constants and reactances within synchronous machine models. It is assumed that the leakage reactance x is used only in models 8.a, 6.a, 6.d and 5.a, whereas the time constant TAA is used only in models 8.b, 6.b, 6.e, 5.b and 5.c.

Example 15.1 Comparison of Synchronous Machine Models of

Di erent Orders

Figure 15.3 shows a comparison of the transient behavior of synchronous machine models 8.a, 6.a and 6.d. The simulation refers to the generator 1 bus voltage of the IEEE 14-bus system. The disturbance is line 2-4 outage at t = 0.2 s. In the first few instants after the disturbance, the most detailed model, namely model 8.a, which includes stator fluxes dynamics, shows fast damped oscillations. However, For t > 0.45, the trajectory of the three models is practically the same. As expected, flux dynamics are very fast with respect to electro-mechanical time scales. Furthermore, a relatively small step length is required to observe the e ect of flux dynamics. Finally, there is practically no di erence in the dynamic responses of models 6.a and 6.d. This result confirms the conclusion drawn in Example 11.2 of Chapter 11.

Example 15.2 Comparison of Synchronous Machine Models of

Di erent Types

Figure 15.4 shows a comparison of transient response of Sauer-Pai’s, Marconato’s and Anderson-Fouad’s models. In particular the plots show the generator 1 bus voltage for the IEEE 14-bus system following a line 2-4 outage at t = 1 s. The simulation is repeated using three synchronous machines models, namely models 6.a, 6.b and 6.c. The di erences in the magnetic equations do not lead to substantial changes in the transient behavior. However, the three models show di erent oscillation modes and damping. In other words, state matrix eigenvalues change depending on the model used. This eigenvalue uncertainty has to be taken into account when setting up parameters of control systems such as AVRs and PSSs.

Table 15.2 Synchronous machine model taxonomy

 

Name

Order

Equations

State Variables

 

 

 

 

 

 

Model 8.a

 

 

δ, ω, e

, e

, ψ

, ψ

, ψ , ψ

 

 

8

(15.2)-(15.8), (15.9), (15.13), (15.15)

 

 

 

 

 

q

d

d

q

d

q

 

 

Model 8.b

8

(15.2)-(15.8), (15.9), (15.16), (15.18)

δ, ω, e

, e

, e

, e

, ψ , ψ

q

 

 

 

 

 

q

d

d

 

q

 

d

 

 

Model 8.c

8

(15.2)-(15.8), (15.9), (15.19), (15.18)

δ, ω, e

, e

, e

, e

, ψ , ψ

q

 

 

 

 

 

q

d

d

 

q

 

d

 

 

Model 6.a

6

(15.2)-(15.8), (15.11), (15.13), (15.15)

δ, ω, e

, e

, ψ

, ψ

 

 

 

 

 

 

 

q

d

d

q

 

 

 

 

Model 6.b

6

(15.2)-(15.8), (15.11), (15.16), (15.18)

δ, ω, eq

, ed, ed , eq

 

 

 

 

 

Model 6.c

6

(15.2)-(15.8), (15.11), (15.19), (15.18)

δ, ω, eq

, ed, ed , eq

 

 

 

 

 

Model 6.d

6

(15.2)-(15.8), (15.10), (15.13), (15.15)

δ, ω, e

, e

, ψ

, ψ

 

 

 

 

 

 

 

q

d

d

q

 

 

 

 

Model 6.e

6

(15.2)-(15.8), (15.10), (15.16), (15.18)

δ, ω, eq

, ed, ed , eq

 

 

 

 

 

Model 6.f

6

(15.2)-(15.8), (15.10), (15.19), (15.18)

δ, ω, eq

, ed, ed , eq

 

 

 

 

 

Model 5.a

5

(15.2)-(15.8), (15.11), (15.22), (15.23)

δ, ω, e

, ψ , ψ

 

 

 

 

 

 

 

 

q

d

q

 

 

 

 

 

Model 5.b

5

(15.2)-(15.8), (15.11), (15.24), (15.25)

δ, ω, eq

, ed , eq

 

 

 

 

 

 

 

Model 5.c

5

(15.2)-(15.8), (15.11), (15.27), (15.28)

δ, ω, eq

, ed, ed

 

 

 

 

 

 

 

Two-axis model

4

(15.2)-(15.8), (15.11), (15.29), (15.30)

δ, ω, eq

, ed

 

 

 

 

 

 

 

 

Model 4.b

4

(15.2)-(15.8), (15.11), (15.31), (15.32)

δ, ω, eq , ed

 

 

 

 

 

 

 

 

One-axis model

3

(15.2)-(15.8), (15.11), (15.33), (15.34)

δ, ω, eq

 

 

 

 

 

 

 

 

 

Classical model 2.a

2

(15.2)-(15.8), (15.11), (15.35), (15.36)

δ, ω

 

 

 

 

 

 

 

 

 

Classical model 2.b

2

(15.2)-(15.8), (15.11), (15.35), (15.38)

δ, ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine Synchronous 1.15

337

338 15 Alternate-Current Machines

Table 15.3 Reference table for synchronous machine time constants and reactances

Order

Td0

Tq0

Td0

Tq0

xd

xd

xd

xq

xq

xq

 

 

 

 

 

Models 8.x

 

 

 

 

Models 6.x

 

 

 

 

Model 5.a

 

 

 

 

 

 

Model 5.b

 

 

 

 

 

 

Model 5.c

 

 

 

 

 

 

Two-axis model

 

 

 

 

 

 

Model 4.b

 

 

 

 

 

 

 

One-axis model

 

 

 

 

 

 

 

Classical model 2.a

 

 

 

 

 

 

 

 

Classical model 2.b

 

 

Fig. 15.3 Comparison of synchronous machine models of di erent orders

Example 15.3 One-Axis Model with Stator Flux Dynamics

For the sake of showing all possible combinations of the sets of equations described above, this example considers an unusual fifth order model described in [263]. This model is formed by equations (15.2)-(15.8), by the dynamical electrical equations (15.9), (15.34), and by the field voltage di erential equation:

ψ˙f = (vf − eq )/Td0

(15.39)

15.1 Synchronous Machine

339

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15.4 Comparison of synchronous machine models of di erent types

where the field flux ψf is:

ψf = eq (xd − xd)id

(15.40)

which leads to rewrite (15.39) as:

e˙

=

xd

 

1

 

(v

 

e

)

 

xd − xd

ψ˙

(15.41)

xd

Td

 

f

 

q

 

0

 

q

 

xd

 

d

Clearly, this model has no practical applications since is too detailed and too simplified at the same time. It is too detailed because it includes stator flux dynamics, thus requiring a comparatively small step length in numerical integration, and it is too simplified because it considers only one dynamic on the d-axis, thus resulting inadequate for detailed transient stability analysis.

15.1.8Saturation

As discussed above, the variety of magnetic equations allows defining a huge variety of machine models. Taking into account saturation introduces even more arbitrariness in the formulation of the synchronous machine model.

340 15 Alternate-Current Machines

A general model that accounts for saturation is a generalization of the

Sauer-Pai’s model (15.13) and (15.15) [269].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e˙

= ( e

 

(x

 

x )(i

d

γ

d2

ψ

 

(1

γ

d1

)i

d

+ γ

d2

e

(15.42)

q

q

 

d

d

 

 

 

d

 

 

 

 

 

 

q

 

 

+γd2ςd(z)) − ςf (z) + vf )/Td0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e˙

= ( e

+ (x

 

x )(i

q

γ

ψ

 

(1

 

γ

q1

)i

q

γ

d2

e

 

d

d

 

 

q

q

 

 

 

q2

q

 

 

 

 

 

 

d

 

 

+ςq2(z)) + ςq1(z))/Tq0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ψ˙

= ( ψ

+ e

(x

x )i

 

 

ς (z))/T

 

 

 

 

 

 

 

 

 

 

 

 

d

d

 

 

q

d

 

 

d d

 

 

 

d0

 

 

 

 

 

 

 

 

 

ψ˙

= ( ψ

e

(x

x )i

 

 

ς

(z))/T

 

 

 

 

 

 

 

 

 

q

q

d

q

 

 

q q2

 

 

 

 

q0

 

 

 

 

 

 

 

 

 

0= ψd + xd id − γd1eq (1 − γd1)ψd − ςd(z)

0= ψq + xq iq + γq1ed (1 − γq1)ψq − ςq (z)

where z = [eq , ed, ψd , ψq , id, iq ]T and the saturation functions are:

ςf (z): saturation of the dc field winding.

ςd(z) and ςq (z): d- and q-axis saturation of the stator windings. ςq1(z): saturation of current induced in the rotor core.

ςd1(z) and ςq2(z): saturation of the equivalent damper windings.

Instead of focusing on some particular model that includes saturation, following subsections discuss two examples of saturation functions and the data required for defining such saturation. Once the functions are defined, the inclusion of a saturation function is straightforward using (15.42). For simplicity, in the remainder, it is considered a generic saturation function ψ = ς(i) that links a generic current i to a generic flux ψ.

Piece-Wise Saturation Function

A piece-wise saturation model is discussed in [163] and is shown in Figure 15.5. The saturation function consists of three regions, as follows:

 

 

1i,

if

ψ ψ

A

 

 

ψ =

 

x

 

< ψ

 

ψA ) ,

x1i

ψ + AseBs (ψ

 

 

 

 

 

 

 

 

 

 

 

 

 

ψ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1i

ψC + xr (ψ − ψB ) ,

 

 

 

 

 

 

 

 

 

if ψA ≤ ψ < ψB

(15.43)

if ψB ≤ ψ

 

where xr = x1/x2. The curve is completely defined by the parameters ψA, ψB , ψC , xr , As and Bs. The main issue of this model is that for iA = ψA/x1, the function is discontinuous, since for iA , the function returns x1iA and for i+A, the function returns x1iAψA/(ψA + As). This discontinuity is immaterial only if As ψA.