- •Глава 1
- •1.2 Характеристики ядерного распада
- •1.2.1 Процессы ядерного распада. Общие сведения
- •1.2.2 Альфа-распад
- •1.2.3 Бета-распад
- •1.3 Образование рентгеновского излучения
- •1.3.1 Модель атома Бора
- •1.3.2 Процессы образования рентгеновского излучения
- •1.4.1 Типичные спектры
- •1.4.2 Основные характеристики гамма-излучения, используемые для анализа ядерных материалов
- •1.4.3 Гамма-излучение продуктов деления
- •1.4.4 Радиационный фон
- •1.5.1 Тормозное излучение
- •Глава 2
- •2.1 Введение
- •2.2 Экспоненциальное ослабление
- •2.2.1 Основной закон ослабления гамма-излучения
- •2.2.2 Массовый коэффициент ослабления
- •2.3 Процессы взаимодействия
- •2.3.1 Фотоэлектрическое поглощение
- •2.3.2 Комптоновское рассеяние
- •2.3.3 Образование пар
- •2.3.4 Полный массовый коэффициент ослабления
- •2.4 Фильтры
- •2.5 Защита
- •Глава 3
- •3.1 Введение
- •3.2 Типы детекторов
- •3.2.1 Газонаполненные детекторы
- •3.2.2 Сцинтилляционные детекторы
- •3.2.3 Твердотельные детекторы
- •3.3 Характеристики регистрируемых спектров
- •3.3.1 Общий отклик детектора
- •3.3.2 Спектральные характеристики
- •3.3.3 Разрешение детектора
- •3.3.4 Эффективность детектора
- •3.4 Выбор детектора
- •Глава 4
- •4.1 Введение
- •4.2 Выбор детектора
- •4.3 Высоковольтные источники напряжения смещения
- •4.4 Предусилитель
- •4.5 Усилитель
- •4.5.1 Схема "полюс-ноль"
- •4.5.2 Цепь восстановления базового уровня
- •4.5.3 Цепь режекции наложений
- •4.5.4 Усовершенствование схемы усилителей
- •4.6 Одноканальный анализатор
- •4.8 Многоканальный анализатор
- •4.8.1 Аналого-цифровой преобразователь
- •4.8.2 Стабилизаторы спектра
- •4.8.3 Память многоканального анализатора, дисплей и анализ данных
- •4.9 Вспомогательное электронное оборудование
- •4.10 Заключительные замечания
- •Глава 5
- •5.1 Энергетическая градуировка и определение положения пика
- •5.1.1 Введение
- •5.1.2 Линейная энергетическая градуировка
- •5.1.3 Определение положения пика (центроиды)
- •5.1.4 Визуальное определение положения пика
- •5.1.5 Графическое определение положения пика
- •5.1.6 Определение положения пика методом первых моментов
- •5.1.7 Определение положения пика с помощью метода пяти каналов
- •5.1.8 Определение положения пика с помощью подгонки линеаризованной функцией Гаусса
- •5.1.9 Определение положения пика с использованием подгонки параболаризованной функцией Гаусса
- •5.1.10 Определение положения пика с помощью сложных программ подгонки спектра
- •5.2 Измерения разрешения детектора
- •5.2.1 Введение
- •5.2.3 Графическое определение ширины пика
- •5.2.4 Определение ширины пика с помощью аналитической интерполяции
- •5.2.5 Определение ширины пика с помощью метода вторых моментов
- •5.2.6 Определение ширины пика с помощью подгонки линеаризованной функцией Гаусса
- •5.2.7 Определение ширины пика с помощью подгонки параболаризованной функцией Гаусса
- •5.3 Определение площади пика полного поглощения
- •5.3.1 Введение
- •5.3.2 Выбор рассматриваемых областей
- •5.3.3 Вычитание линейного комптоновского фона
- •5.3.4 Вычитание сглаженной ступеньки комптоновского фона
- •5.3.5 Вычитание комптоновского фона при использовании единственной рассматриваемой области фона
- •5.3.6 Вычитание комптоновского фона с помощью процедуры двух стандартных образцов
- •5.3.7 Использование сумм числа отсчетов в рассматриваемых областях для измерения площадей пиков
- •5.3.8 Использование простых подгонок функцией Гаусса для измерения площади пика
- •5.3.9 Использование известных параметров формы для измерения площадей пиков в мультиплетах
- •5.3.10 Использование сложных вычислительных программ для измерения площади пика
- •5.4.1 Введение
- •5.4.2 Зависимость просчетов от входной загрузки
- •5.4.3 Пропускная способность спектрометрических систем
- •5.4.4 Методы введения поправок. Общие замечания
- •5.4.6 Введение поправок на мертвое время и наложения импульсов с помощью генератора импульсов
- •5.4.7 Метод образцового источника для введения поправок на мертвое время и наложения
- •5.5 Эффекты закона обратного квадрата
- •5.6 Измерения эффективности детектора
- •5.6.1 Абсолютная эффективность регистрации пика полного поглощения
- •5.6.2 Собственная эффективность регистрации пика полного поглощения энергии
- •5.6.3 Относительная эффективность
- •5.6.5 Эффективность в зависимости от энергии и положения
- •Глава 6
- •6.1 Введение
- •6.2 Процедуры
- •6.2.1 Предварительные замечания
- •6.2.2 Общее описание процедуры анализа
- •6.2.3 Необходимые требования при определении коэффициента поправки на самоослабление
- •6.2.4 Методы определения линейного коэффициента ослабления образца
- •6.3 Формальное определение коэффициента поправки на самоослабление
- •6.3.1 Общее определение
- •6.3.2 Удобные типовые формы образцов
- •6.4 Основные параметры коэффициента поправки на самоослабление
- •6.5 Аналитические зависимости для коэффициента поправки на самоослабление в дальней геометрии
- •6.5.1 Образцы в форме пластины
- •6.5.2 Цилиндрические образцы
- •6.5.3 Образцы сферической формы
- •6.6 Численные расчеты для ближней геометрии
- •6.6.1 Общие положения
- •6.6.2 Одномерная модель
- •6.6.3 Двухмерная модель
- •6.6.4 Трехмерная модель
- •6.6.5 Приближенные формулы и интерполяция
- •6.6.6 Влияние абсолютной и относительной погрешностей при расчете коэффициента поправки на самоослабление
- •6.6.7 Точность определения коэффициента поправки на самоослабление и полной скорректированной скорости счета
- •6.9 Примеры анализа
- •6.9.2 Интерполяция и экстраполяция коэффициента пропускания излучения
- •6.9.4 Анализ раствора плутония-239 в ближней геометрии
- •6.9.5 Сегментное сканирование с поправкой на пропускание излучения
- •7.3.2 Двухкомпонентная задача (уран и материал матрицы)
- •7.4 Методики анализа по отношению пиков
- •7.6 Измерения обогащения по нейтронному излучению
- •7.7 Поправки на ослабление в стенках контейнера
- •7.7.1 Прямое измерение толщины стенки
- •7.8.1 Измерение концентрации
- •7.8.2 Соотношение компонентов в смешанном оксидном топливе
- •8.2 Основные сведения
- •8.2.1 Характеристики распада изотопов плутония
- •8.2.2 Характеристики распада изотопа 241Pu
- •8.2.3 Определение концентрации изотопа 242Pu
- •8.2.4 Спектральная интерференция
- •8.2.5 Практическое применение измерений изотопного состава плутония
- •8.3 Спектральные области, используемые для изотопных измерений
- •8.3.1 Область энергии 40 кэВ
- •8.3.2 Область энергии 100 кэВ
- •8.3.3 Область энергии 125 кэВ
- •8.3.4 Область энергии 148 кэВ
- •8.3.5 Область энергии 160 кэВ
- •8.3.6 Область энергии 208 кэВ
- •8.3.7 Область энергии 332 кэВ
- •8.3.8 Область энергии 375 кэВ
- •8.3.9 Область энергии 640 кэВ
- •8.4 Основы измерений
- •8.4.1 Измерение изотопных отношений
- •8.4.2 Измерение абсолютной массы изотопа
- •8.4.3 Изотопная корреляция 242Pu
- •8.5 Получение данных
- •8.5.1 Электроника
- •8.5.2 Детекторы
- •8.5.3 Фильтры
- •8.5.4 Скорость счета и геометрия образец/детектор
- •8.5.5 Время измерения
- •8.6.1 Суммирование по рассматриваемой области
- •8.6.2 Подгонка пика
- •8.6.3 Анализ по функции соответствия
- •8.7 Приборное оснащение
- •8.7.1 Компания Рокуэлл-Хэнфорд
- •8.7.2 Лос-Аламосская национальная лаборатория
- •8.7.3 Установка Маундской лаборатории
- •8.7.5 Обзор погрешностей измерений
- •Глава 9
- •9.1 Введение
- •9.2 Моноэнергетическая плотнометрия
- •9.2.1 Измерение концентрации и толщины
- •9.2.2 Точность измерений
- •9.3 Многоэнергетическая плотнометрия
- •9.3.1 Анализ двухэнергетического случая
- •9.3.2 Точность измерения
- •9.3.3 Распространение на случай большего числа значений энергий
- •9.4 Плотнометрия по краю поглощения
- •9.4.1 Описание методики измерений
- •9.4.2 Точность измерения
- •9.4.3 Чувствительность измерения
- •9.4.4 Эффекты матрицы
- •9.4.5 Выбор методики измерений
- •9.4.6 Источники излучения
- •9.5 Моноэнергетические плотномеры
- •9.6 Двухэнергетические плотномеры
- •9.7 Плотномеры по краю поглощения
- •Глава 10
- •10.1 Введение
- •10.2 Теория
- •10.2.1 Образование рентгеновского излучения
- •10.2.2 Выход флюоресценции
- •10.2.3 Пропускание фотонов
- •10.2.4 Геометрия измерений
- •10.3 Типы источников
- •10.4 Поправка на ослабление в образце
- •10.4.1 Эффекты ослабления в образце
- •10.4.2 Основное уравнение анализа
- •10.4.3 Методы поправки на ослабление
- •10.5 Области применения и аппаратура
- •Глава 11
- •11.1 Введение
- •11.2 Спонтанное и вынужденное деление ядер
- •11.3 Нейтроны и гамма-кванты деления
- •11.5 Нейтроны других ядерных реакций
- •11.6 Изотопные нейтронные источники
- •11.7 Выводы
- •Глава 12
- •12.1 Введение
- •12.2 Микроскопические взаимодействия
- •12.2.1 Понятие сечения взаимодействия
- •12.2.2 Соотношение энергия-скорость для нейтронов
- •12.2.3 Типы взаимодействий
- •12.2.4 Зависимость сечения взаимодействия от энергии
- •12.3 Макроскопические взаимодействия
- •12.3.1 Макроскопические сечения
- •12.3.2 Длина свободного пробега и скорость реакции
- •12.4 Эффекты замедления в большом объеме вещества
- •12.5 Эффекты размножения в массивных образцах вещества
- •12.6 Защита от нейтронов
- •12.7 Методы расчета переноса нейтронов
- •12.7.1 Метод Монте-Карло
- •12.7.2 Метод дискретных ординат
- •Глава 13
- •13.1 Механизмы регистрации нейтронов
- •13.2 Основные свойства газонаполненных детекторов
- •13.4 Газонаполненные детекторы
- •13.4.3 Камеры деления
- •13.4.4 Детекторы с покрытием из 10B
- •13.5 Пластмассовые и жидкие сцинтилляторы
- •13.5.1 Введение
- •13.5.3 Дискриминация по форме импульса
- •13.6 Другие типы детекторов нейтронов
- •13.7 Измерение энергетических спектров нейтронов
- •13.7.1 Введение
- •13.7.2 Методы измерений
- •Глава 14
- •14.1 Введение
- •14.1.1 Теория регистрации полного потока нейтронов
- •14.1.2 Сравнение методов регистрации полного потока нейтронов и нейтронных совпадений
- •14.2 Источники образования первичных нейтронов
- •14.2.1 Соединения плутония
- •14.2.2 Соединения урана
- •14.2.3 Примеси
- •14.2.4 Эффекты влияния энергетического спектра нейтронов
- •14.2.5 Эффекты тонкой мишени
- •14.3 Перенос нейтронов в образце
- •14.3.1 Умножение нейтронов утечки
- •14.3.2 Спектр нейтронов утечки
- •14.4 Эффективность регистрации нейтронов
- •14.4.1 Расположение гелиевых счетчиков в замедлителе
- •14.4.2 Конструкция замедлителя
- •14.4.3 Влияние энергетического спектра нейтронов
60 |
Х. А. Смит, мл. и М. Лукас |
Ðèñ. 3.11. Полная эффективность регистрации пика полного поглощен ия для точечного источника на расстоянии 83 мм от поверхности истинного коакс иального детектора Ge(Li) объемом 38 см3 (переделано из [15]). Интерпретация аналогична
ðèñ. 3.10
3.4 ВЫБОР ДЕТЕКТОРА
НРА имеет различные цели, которые могут диктовать выбор разных детекторов. Обсуждение выбора детекторов с точки зрения энергетического разрешения дано в главе 4. Дополнительным фактором выбора является рассматриваемый с точки зрения практического применения энергетический диапазон гамма-излу- чения (или рентгеновского излучения). Вообще, основные рассматриваемые энергии фотонов в НРА ядерных материалов находятся в диапазоне от низкой рентгеновской области (85-100 кэВ) до приблизительно 400 кэВ. Исключениями являются плотнометрия по LIII-краю в области энергий от 15 до 30 кэВ (см. главу 9), измерения изотопного состава плутония в области от 400 до 1000 кэВ (см. главу 8) и редкие измерения активности дочерних продуктов 238U в области от 600 до 1000 кэВ. Основные характеристики гамма-излучений ядерных материалов приведены в табл. 1.2. Как было показано выше, толстые (по оси) детекторы являются более эффективными для измерения высоких энергий, а для измерений низкоэнергетических квантов гамма- и рентгеновского излучения лучше подходят тонкие (по оси) детекторы, благодаря их оптимальной эффективности регистрации при низких и средних энергиях и относительной нечувствительности к излу-
Глава 3. Детекторы гамма-излучения |
61 |
чению с более высокой энергией. Другие факторы, такие как стоимость и портативность, могут диктовать использование менее дорогих и более миниатюрных сцинтилляционных детекторов NaI с сопутствующей потерей хорошего энергети- ческого разрешения. В последние годы стали доступны детекторы высокого разрешения с небольшими сосудами Дьюара с жидким азотом, что позволяет уменьшить размеры детектирующей системы до размеров детекторов NaI. Однако стоимостные соображения все еще заставляют отдавать предпочтение сцинтилляционному детектору перед детектором высокого разрешения.
ЛИТЕРАТУРА
1.G.F. Knoll, Radiation Detection and Measurement (John Wiley & &Sons, Inc., New York, 1979).
2.F. Adams and R. Dams, Applied Gamma-Ray Spectrometry (Pergamon Press, New York, 1975).
3.C.E. Moss, E.J. Dowdy, and M.C. Lucas, "Bismuth Germanate Scintillators: Applications in Nuclear Safeguards and Health Physics", Nuclear Instruments and Methods A242, 480 (1986).
4.P.E. Koehler, S.A. Wender, and J.S. Kapustinsky, "Improvements in the Energy Resolution and High-Count-Rate Performance of Bismuth Germanate", Nuclear Instruments and Methods A242, 369 (1986).
5.J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, Oxford, 1964).
6.H.W. Cramer, C. Chasman, and K.W. Jones, "Effects Produced by Fast Neutron Bombardment of Ge(Li) Gamma-Ray Detectors", Nuclear Instruments and Methods 62, 173 (1968).
7.P.H. Stelson, J.K. Dickens, S. Raman, and R.C. Trammell, "Deterioration of Large Ge(Li) Diodes Caused by Fast Neutrons," Nuclear Instruments and Methods 98, 481 (1972).
8.R. Baader, W. Patzner, and H. Wohlfarth, "Regeneration of Neutron-Damaged Ge(Li) Detectors Inside the Cryostat," Nuclear Instruments and Methods 117, 609 (1974).
9.R.H. Pehl, "Germanium Gamma-Ray Detectors," Physics Today 30, 50 (Nov., 1977).
10.J.M. Marler and V.L. Gelezunas, "Operational Characteristics of High-Purity Germanium Photon Spectrometers Cooled by a Closed-Cycle Cryogenic Refrigerator," IEEE Transactions on Nuclear Science NS 20, 522 (1973).
11.E. Sakai, "Present Status of Room-Temperature Semiconductor Detectors," Nuclear Instruments and Methods 196, 121 (1982).
12.P. Siffert et al., "Cadmium Telluride Nuclear Radiation Detectors," IEEE Transactions on Nuclear Science NS 22, 211 (1975).
13.U. Fano, "On the Theory of Ionization Yield of Radiation in Different Substances," Physics Review 70, 44 (1946); "Ionization Yield of Radiation II: The Fluctuations in the Number of Ions," Physics Review 72, 26 (1947).
62 |
Х. А. Смит, мл. и М. Лукас |
14.A.F. Muggleton, "Semiconductor X-Ray Spectrometers," Nuclear Instruments and Methods 101, 113 (1972).
15.H. Seyfarth, A.M. Hassan, B. Hrastnik, P. Goettel, and W. Delang, "Efficiency Determination for some Standard Type Ge(Li) Detectors for Gamma Rays in the Energy Range from 0,04 to 11 MeV," Nuclear Instruments and Methods 105, 301 (1972).