
- •1. Предмет теории вероятностей. Понятие случайного события.
- •2. Основные типы событий, алгебра событий.
- •3.Понятие вероятности события. Классическое, статистическое и геометрическое определение вероятности. Свойства вероятностей.
- •Урны и шарики
- •Урновая схема: выбор без возвращения, с учетом порядка
- •Урновая схема: выбор без возвращения и без учета порядка
- •Урновая схема: выбор с возвращением и с учетом порядка
- •Урновая схема: выбор с возвращением и без учета порядка
- •8.Формула полной вероятности.
- •9. Формула Бейеса.
- •10. Формула (схема) Бернулли.
- •11. Предельные теоремы в схеме Бернулли. Формула Пуассона и условия её применимости.
- •Предельные теоремы для схем Бернулли
- •Пуассоновское приближение
- •Нормальное приближение
- •О применимости предельных теорем в схеме Бернулли
- •12. Локальная и интегральная теорема Муавра-Лапласа.
- •13. Дискретные случайные события и возможности их описания.
- •15. Функция распределения и её свойства. Вероятность попадания случайной величины на заданный интервал.
- •16. Плотность распределения и её свойства. Вероятностный и геометрический смысл плотности распределения.
- •17. Математическое ожидание случайной величины и его свойства.
- •18. Дисперсия и среднее квадратическое отклонение случайной величины. Свойства дисперсии. Производящая функция.
- •19. Мода и медиана. Моменты случайных величин. Асимметрия и эксцесс. Квантили распределения.
- •20. Математическое ожидание и дисперсия числа появления события в независимых опытах.
- •21. Непрерывная случайная величина. Числовые характеристики непрерывных случайных величин.
- •Кривая распределения вероятностей.
- •22. Закон равномерного распределения.
- •23. Экспонентный закон распределения.
- •24. Нормальное распределение. Функция Лапласа. Вероятность попадания в заданный интервал.
- •25. Функция распределения двумерной случайной величины.
- •26. Плотность распределения вероятностей двумерной случайной величины и её свойства.
- •27. Зависимость и независимость двух случайных величин. Числовые характеристики двумерной с.В. Математическое ожидание и дисперсия.
- •28. Корреляционный момент. Коэффициент корреляции. Свойства ковариации и коэффициента корреляции.
- •Свойства ковариации Править
- •29. Предельные теоремы теории вероятностей. Неравенство и теория Чебышева
- •31. Центральная предельная теорема.
- •32. Математическая статистика. Основные понятия.
- •33. Генеральная совокупность и выборка. Характеристики выборки. Способы отбора.
- •34. Статистическое распределение выборки.
- •35. Эмпирическая функция распределения.
- •36. Полигон и гистограмма.
- •37. Статистические оценки параметров распределения.
- •39. Точечная и интервальная оценки. Доверительный интервал. Методики нахождения точечных оценок.
- •40. Метод статистических гипотез.
13. Дискретные случайные события и возможности их описания.
Рассмотрим
случайную величину * ,
возможные значения которой образуют
конечную или бесконечную последовательность
чисел x1,
x2, ..., xn, ... . Пусть
задана функция p(x),
значение которой в каждой точке x=xi
(i=1,2, ...) равно
вероятности того, что величина
примет
значение xi
|
(16) |
Такая
случайная величина называется дискретной
(прерывной).
Функция р(х) называется законом
распределения вероятностей случайной
величины, или
кратко, законом
распределения. Эта
функция определена в точках
последовательностиx1,
x2, ..., xn, ... . Так
как в каждом из испытаний случайная
величина
принимает
всегда какое-либо значение из области
ее изменения, то
Для задания дискретной случайной величины нужно знать ее возможные значения и вероятности, с которыми принимаются эти значения. Соответствие между ними называется законом распределения случайной величины. Он может иметь вид таблицы, формулы или графика.
Таблица, в которой перечислены возможные значения дискретной случайной величины и соответствующие им вероятности, называется рядом распределения:
xi |
x1 |
x2 |
… |
xn |
… |
pi |
p1 |
p2 |
… |
pn |
… |
Заметим, что событие, заключающееся в
том, что случайная величина примет одно
из своих возможных значений, является
достоверным, поэтому
Графически закон распределения дискретной случайной величины можно представить в виде многоугольника распределения– ломаной, соединяющей точки плоскости с координатами (xi, pi).
x1x2x3x4x5
14. Закон распределения дискретной случайно величины. Многоугольник распределения.
Определение. Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретной случайной величины.
Закон распределения может быть задан аналитически, в виде таблицы или графически.
Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения.
Законом распределения случайной дискретной величины (X) называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины (x1,x2,...xn) и соответствующими им вероятностями (p1,p2,... ,pn). При этом события (x1,x2,...xn) образуют полную группу (т.е. появление одного из них является достоверным событием), что означает
(1)
Про случайную величину X в таком случае говорят, что она подчинена данному закону распределения.
Простейшей формой задания этого закона является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности:
Возможное значение X |
X1 |
Х2 |
... |
Хn |
Вероятность |
Р1 |
Р2 |
... |
Рn |
Такая таблица называется таблицей распределения (вероятностей) случайной величины X.
Графически закон распределения дискретной случайной величины можно представить в виде многоугольника распределения– ломаной, соединяющей точки плоскости с координатами (xi, pi).
x1x2x3x4x5
Графическое представление этой таблицы называется многоугольником распределения.При этом сумма все ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.