Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на билеты - текст.doc
Скачиваний:
570
Добавлен:
03.10.2013
Размер:
1.52 Mб
Скачать

13. Дискретные случайные события и возможности их описания.

Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную последовательность чисел x1, x2, ..., xn, ... . Пусть задана функция p(x), значение которой в каждой точке x=xi (i=1,2, ...) равно вероятности того, что величина примет значение xi

(16)

   Такая случайная величина называется дискретной (прерывной). Функция р(х) называется законом распределения вероятностей случайной величины, или кратко, законом распределения. Эта функция определена в точках последовательностиx1, x2, ..., xn, ... . Так как в каждом из испытаний случайная величина принимает всегда какое-либо значение из области ее изменения, то

Для задания дискретной случайной величины нужно знать ее возможные значения и вероятности, с которыми принимаются эти значения. Соответствие между ними называется законом распределения случайной величины. Он может иметь вид таблицы, формулы или графика.

Таблица, в которой перечислены возможные значения дискретной случайной величины и соответствующие им вероятности, называется рядом распределения:

xi

x1

x2

xn

pi

p1

p2

pn

Заметим, что событие, заключающееся в том, что случайная величина примет одно из своих возможных значений, является достоверным, поэтому

Графически закон распределения дискретной случайной величины можно представить в виде многоугольника распределения– ломаной, соединяющей точки плоскости с координатами (xi, pi).

x1x2x3x4x5

14. Закон распределения дискретной случайно величины. Многоугольник распределения.

  Определение.  Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретной случайной величины.

            Закон распределения может быть задан аналитически, в виде таблицы или графически.

            Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения.

Законом распределения случайной дискретной величины (X) называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины (x1,x2,...xn) и соответствующими им вероятностями (p1,p2,... ,pn). При этом события (x1,x2,...xn) образуют полную группу (т.е. появление одного из них является достоверным событием), что означает

(1)

Про случайную величину X в таком случае говорят, что она подчинена данному закону распределения.

Простейшей формой задания этого закона является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности:

Возможное значение X

X1

Х2

...

Хn

Вероятность

Р1

Р2

  ...

Рn

Такая таблица называется таблицей распределения (вероятностей) случайной величины X.

Графически закон распределения дискретной случайной величины можно представить в виде многоугольника распределения– ломаной, соединяющей точки плоскости с координатами (xi, pi).

x1x2x3x4x5

            Графическое представление этой таблицы называется многоугольником распределения.При этом сумма все ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.