- •Введение
- •Основные этапы эконометрического исследования:
- •Основные типы моделей:
- •Тема 1. Основные понятия теории вероятностей
- •1.1. Вероятностный эксперимент, событие, вероятность.
- •1.2. Случайные величины
- •1.3. Числовые характеристики св
- •Свойства математического ожидания:
- •Свойства дисперсии:
- •1.4. Законы распределений св
- •1. Закон равномерного распределения вероятностей
- •2. Нормальный закон распределения
- •3. Распределение
- •4. Распределение Стьюдента(t – распределение)
- •5. Распределение Фишера (f – распределение)
- •( Число степеней свободы)
- •Тема 2. Базовые понятия статистики.
- •2.1. Выборка и генеральная совокупность
- •2.2. Способы представления и обработки экономических данных
- •2.3. Статистические оценки параметров распределения
- •2.4. Статистическая проверка гипотез
- •Тема 3. Соотношения между экономическими переменными. Линейная связь. Корреляция
- •3.1. Коэффициент линейной корреляции
- •3.2. Оценка значимости (достоверности) коэффициента корреляции
- •Тема 4. Парная линейная регрессия. Метод наименьших квадратов
- •Тема 5. Оценка качества полученного уравнения (верификация)
- •5.1. Оценка общего качества уравнения регрессии
- •5.2. Оценка существенности параметров линейной регрессии и всего уравнения в целом
- •5.2.1. Анализ статистической значимости коэффициентов линейной регрессии
- •5.2.2. Анализ статистической значимости уравнения в целом. Распределение Фишера в регрессионном анализе
- •5.3. Проверка предпосылок, лежащих в основе мнк
- •5.3.1. Проверка первой предпосылки мнк
- •5.3.2. Проверка второй предпосылки мнк
- •5.3.3. Автокорреляция ошибок. Статистика Дарбина-Уотсона
- •Методы устранения автокорреляции. Авторегрессионное преобразование
- •5.3.4. Проверка гомоскедастичности дисперсии ошибок
- •Обобщенный метод наименьших квадратов (омнк)
- •Тема 6. Множественная корреляция и линейная регрессия
- •6.1. Спецификация модели. Отбор факторов при построении уравнения множественной регрессии
- •6.2. Метод наименьших квадратов (мнк)
- •6.3. Анализ качества эмпирического уравнения множественной линейной регрессии
- •Тема 7. Прогнозирование
- •7.1. Оценка прогнозных качеств модели
- •7.2. Интервалы прогноза по линейному уравнению регрессии
- •Тема 8. Нелинейные модели регрессии. Простейшие методы линеаризации
- •Тема 9. Фиктивные переменные в регрессионных моделях
- •Тема 10. Системы эконометрических уравнений
- •10.1. Общее понятие о системах уравнений, используемых в эконометрике
- •10.2. Структурная и приведенная формы модели
- •10.3. Проблема идентификации
- •Косвенный метод наименьших квадратов (кмнк);
- •Двухшаговый метод наименьших квадратов (дмнк);
- •Тема 11. Временные ряды в эконометрических исследованиях в.1. Выявление структуры временного ряда
5.3.3. Автокорреляция ошибок. Статистика Дарбина-Уотсона
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Отсутствие зависимости гарантирует отсутствие коррелированности между любыми отклонениями, т.е.и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) остатков определяется как корреляция между соседними значениями случайных отклонений во времени (временные ряды) или в пространстве (перекрестные данные). Она обычно встречается во временных рядах и очень редко – в пространственных данных.
Возможны следующие случаи:
|
|
Эти случаи могут свидетельствовать о возможности улучшить уравнение путём оценивания новой нелинейной формулы или включения новой объясняющей переменной.
В экономических задачах значительно чаще встречается положительная автокорреляция, чем отрицательная автокорреляция.
Если же характер отклонений случаен, то можно предположить, что в половине случаев знаки соседних отклонений совпадают, а в половине – различны.
Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.
Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .
От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках.
Для обнаружения автокорреляции используют либо графический метод. Либо статистические тесты.
Графический метод заключается в построении графика зависимости ошибок от времени (в случае временных рядов) или от объясняющих переменных и визуальном определении наличия или отсутствия автокорреляции.
Наиболее известный критерий обнаружения автокорреляции первого порядка – критерий Дарбина-Уотсона. Статистика DW Дарбина-Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели.
Сначала по построенному эмпирическому уравнению регрессии определяются значения отклонений . А затем рассчитывается статистика Дарбина-Уотсона по формуле:
.
Статистика DW изменяется от 0 до 4. DW=0 соответствует положительной автокорреляции, при отрицательной автокорреляции DW=4. Когда автокорреляция отсутствует, коэффициент автокорреляции равен нулю, и статистика DW = 2.
Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий.
Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы исостоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона(- нижняя граница признания положительной автокорреляции) и(-верхняя граница признания отсутствия положительной автокорреляции) для заданного числа наблюдений, числа независимых переменных моделии уровня значимости. По этим значениям числовой промежутокразбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностьюосуществляется следующим образом:
– положительная автокорреляция, принимается ;
– зона неопределенности;
– автокорреляция отсутствует;
– зона неопределенности;
– отрицательная автокорреляция, принимается .
Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .
Можно показать, что статистика DW тесно связана с коэффициентом автокорреляции первого порядка:
Связь выражается формулой: .
Значения r изменяются от –1 (в случае отрицательной автокорреляции) до +1 (в случае положительной автокорреляции). Близость r к нулю свидетельствует об отсутствии автокорреляции.
При отсутствии таблиц критических значений DW можно использовать следующее «грубое» правило: при достаточном числе наблюдений (12-15), при 1-3 объясняющих переменных, если , то отклонения от линии регрессии можно считать взаимно независимыми.
Либо применить к данным уменьшающее автокорреляцию преобразование (например автокорреляционное преобразование или метод скользящих средних).
Существует несколько ограничений на применение критерия Дарбина-Уотсона.
Критерий DW применяется лишь для тех моделей, которые содержат свободный член.
Предполагается, что случайные отклонения определяются по итерационной схеме
,
называемой авторегрессионной схемой первого порядка AR(1). Здесь – случайный член.
Статистические данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).
Критерий Дарбина – Уотсона не применим к авторегрессионным моделям, которые содержат в числе факторов также зависимую переменную с временным лагом (запаздыванием) в один период.
Для авторегрессионных моделей предлагается h – статистика Дарбина
,
где – оценка коэффициента автокорреляции первого порядка,D(c) – выборочная дисперсия коэффициента при лаговой переменной yt-1, n – число наблюдений.
Обычно значение рассчитывается по формуле, аD(c) равна квадрату стандартной ошибки Sc оценки коэффициента с.