Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эконометрика, все лекции.doc
Скачиваний:
893
Добавлен:
01.06.2015
Размер:
3.64 Mб
Скачать

5.3.3. Автокорреляция ошибок. Статистика Дарбина-Уотсона

Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Отсутствие зависимости гарантирует отсутствие коррелированности между любыми отклонениями, т.е.и, в частности, между соседними отклонениями.

Автокорреляция (последовательная корреляция) остатков определяется как корреляция между соседними значениями случайных отклонений во времени (временные ряды) или в пространстве (перекрестные данные). Она обычно встречается во временных рядах и очень редко – в пространственных данных.

Возможны следующие случаи:

  • Случай положительной автокорреляции ошибок регрессии, когда знаки соседних отклонений, как правило, совпадают между собой ().

  • Случай отрицательной автокорреляции, когда соседние отклонения имеют как правило противоположные знаки ().

Эти случаи могут свидетельствовать о возможности улучшить уравнение путём оценивания новой нелинейной формулы или включения новой объясняющей переменной.

В экономических задачах значительно чаще встречается положительная автокорреляция, чем отрицательная автокорреляция.

Если же характер отклонений случаен, то можно предположить, что в половине случаев знаки соседних отклонений совпадают, а в половине – различны.

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

  1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.

  2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .

От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках.

Для обнаружения автокорреляции используют либо графический метод. Либо статистические тесты.

Графический метод заключается в построении графика зависимости ошибок от времени (в случае временных рядов) или от объясняющих переменных и визуальном определении наличия или отсутствия автокорреляции.

Наиболее известный критерий обнаружения автокорреляции первого порядка – критерий Дарбина-Уотсона. Статистика DW Дарбина-Уотсона приводится во всех специальных компьютерных программах как одна из важнейших характеристик качества регрессионной модели.

Сначала по построенному эмпирическому уравнению регрессии определяются значения отклонений . А затем рассчитывается статистика Дарбина-Уотсона по формуле:

.

Статистика DW изменяется от 0 до 4. DW=0 соответствует положительной автокорреляции, при отрицательной автокорреляции DW=4. Когда автокорреляция отсутствует, коэффициент автокорреляции равен нулю, и статистика DW = 2.

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий.

Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы исостоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона(- нижняя граница признания положительной автокорреляции) и(-верхняя граница признания отсутствия положительной автокорреляции) для заданного числа наблюдений, числа независимых переменных моделии уровня значимости. По этим значениям числовой промежутокразбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностьюосуществляется следующим образом:

– положительная автокорреляция, принимается ;

– зона неопределенности;

– автокорреляция отсутствует;

– зона неопределенности;

– отрицательная автокорреляция, принимается .

Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .

Можно показать, что статистика DW тесно связана с коэффициентом автокорреляции первого порядка:

Связь выражается формулой: .

Значения r изменяются от –1 (в случае отрицательной автокорреляции) до +1 (в случае положительной автокорреляции). Близость r к нулю свидетельствует об отсутствии автокорреляции.

При отсутствии таблиц критических значений DW можно использовать следующее «грубое» правило: при достаточном числе наблюдений (12-15), при 1-3 объясняющих переменных, если , то отклонения от линии регрессии можно считать взаимно независимыми.

Либо применить к данным уменьшающее автокорреляцию преобразование (например автокорреляционное преобразование или метод скользящих средних).

Существует несколько ограничений на применение критерия Дарбина-Уотсона.

  1. Критерий DW применяется лишь для тех моделей, которые содержат свободный член.

  2. Предполагается, что случайные отклонения определяются по итерационной схеме

,

называемой авторегрессионной схемой первого порядка AR(1). Здесь – случайный член.

  1. Статистические данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).

  2. Критерий Дарбина – Уотсона не применим к авторегрессионным моделям, которые содержат в числе факторов также зависимую переменную с временным лагом (запаздыванием) в один период.

Для авторегрессионных моделей предлагается h – статистика Дарбина

,

где – оценка коэффициента автокорреляции первого порядка,D(c) – выборочная дисперсия коэффициента при лаговой переменной yt-1, n – число наблюдений.

Обычно значение рассчитывается по формуле, аD(c) равна квадрату стандартной ошибки Sc оценки коэффициента с.