
- •В. А. Гуртов Твердотельная электроника
- •Глава 1. Необходимые сведения из физики твердого тела и физики полупроводников 7
- •Глава 1. Необходимые сведения из физики твердого тела и физики полупроводников
- •1.1. Зонная структура полупроводников
- •1.2. Терминология и основные понятия
- •1.3. Статистика электронов и дырок в полупроводниках
- •1.3.1. Распределение квантовых состояний в зонах
- •1.3.2. Концентрация носителей заряда и положение уровня Ферми
- •1.4. Концентрация электронов и дырок в собственном полупроводнике
- •1.5. Концентрация электронов и дырок в примесном полупроводнике
- •1.6. Определение положения уровня Ферми
- •1.7. Проводимость полупроводников
- •1.8. Токи в полупроводниках
- •1.9. Неравновесные носители
- •1.10. Уравнение непрерывности
- •Глава 2. Барьеры Шоттки,p-nпереходы и гетеропереходы
- •2.1. Ток термоэлектронной эмиссии
- •2.2. Термодинамическая работа выхода в полупроводникахp‑иn‑типов
- •2.3. Эффект поля, зонная диаграмма при эффекте поля
- •2.4. Концентрация электронов и дырок в области пространственного заряда
- •2.5. Дебаевская длина экранирования
- •2.6. Контакт металл – полупроводник. Барьер Шоттки
- •2.7. Зонная диаграмма барьера Шоттки при внешнем напряжении
- •2.8. Распределение электрического поля и потенциала в барьере Шоттки
- •2.9. Вольт‑амперная характеристика барьера Шоттки
- •2.10. Образование и зонная диаграммар-nперехода
- •2.10.1. Распределение свободных носителей вp‑nпереходе
- •2.10.3. Поле и потенциал вp‑nпереходе
- •2.11. Компоненты тока и квазиуровни Ферми вр‑nпереходе
- •2.12. Вольт‑амперная характеристикар‑nперехода
- •2.14. Гетеропереходы
- •Глава 3. Физика поверхности и мдп-структуры
- •3.1. Область пространственного заряда (опз) в равновесных условиях
- •3.1.1. Зонная диаграмма приповерхностной области полупроводника в равновесных условиях
- •3.2. Заряд в области пространственного заряда
- •3.2.1. Уравнение Пуассона для опз
- •3.2.2. Выражение для заряда в опз
- •3.2.3. Избыток свободных носителей заряда
- •3.2.4. Среднее расстояние локализации свободных носителей от поверхности полупроводника
- •3.2.5. Форма потенциального барьера на поверхности полупроводника
- •2. Обеднение и слабая инверсия в примесном полупроводнике
- •3. Область обогащения и очень сильной инверсии в примесном полупроводнике
- •3.3. Емкость области пространственного заряда
- •3.4. Влияние вырождения на характеристики опз полупроводника
- •3.5. Поверхностные состояния
- •3.5.1. Основные определения
- •3.5.2. Природа поверхностных состояний
- •3.5.3. Статистика заполнения пс
- •3.6. Вольт‑фарадные характеристики структур мдп
- •3.6.1. Устройство мдп‑структур и их энергетическая диаграмма
- •3.6.2. Уравнение электронейтральности
- •3.6.3. Емкость мдп‑структур
- •3.6.4. Экспериментальные методы измерения вольт‑фарадных характеристик
- •КвазистатическийC‑Vметод
- •Метод высокочастотныхC‑Vхарактеристик
- •3.6.5. Определение параметров мдп‑структур на основе анализаC‑V характеристик
- •3.6.6. Определение плотности поверхностных состояний на границе раздела полупроводник – диэлектрик
- •3.7. Флуктуации поверхностного потенциала в мдп‑структурах
- •3.7.1. Виды флуктуаций поверхностного потенциала
- •3.7.2. Конденсаторная модель Гоетцбергера для флуктуаций поверхностного потенциала
- •3.7.3. Среднеквадратичная флуктуация потенциала, обусловленная системой случайных точечных зарядов
- •3.7.4. Потенциал, создаваемый зарядом, находящимся на границе двух сред с экранировкой
- •3.7.5. Потенциальный рельеф в мдп‑структуре при дискретности элементарного заряда
- •3.7.6. Функция распределения потенциала при статистических флуктуациях
- •3.7.7. Зависимость величины среднеквадратичной флуктуации от параметров мдп-структуры
- •3.7.8. Пространственный масштаб статистических флуктуаций
- •3.7.9. Сравнительный анализ зависимости среднеквадратичной флуктуацииσψи потенциала оптимальной флуктуации
- •Глава 4. Полупроводниковые диоды Введение
- •4.1. Характеристики идеального диода на основеp‑nперехода
- •4.1.1. Выпрямление в диоде
- •4.1.2. Характеристическое сопротивление
- •4.1.4. Эквивалентная схема диода
- •4.2. Варикапы
- •4.3. Влияние генерации, рекомбинации и объемного сопротивления базы на характеристики реальных диодов
- •4.3.1. Влияние генерации неравновесных носителей в опЗp-nперехода на обратный ток диода
- •4.3.2. Влияние рекомбинации неравновесных носителей в опЗp‑n перехода на прямой ток диода
- •4.3.3. Влияние объемного сопротивления базы диода на прямые характеристики
- •4.3.4. Влияние температуры на характеристики диодов
- •4.4. Стабилитроны
- •4.5. Туннельный и обращенный диоды
- •4.6. Переходные процессы в полупроводниковых диодах
- •Глава 5. Биполярные транзисторы
- •5.1. Общие сведения. История вопроса
- •5.2. Основные физические процессы в биполярных транзисторах
- •5.2.1. Биполярный транзистор в схеме с общей базой. Зонная диаграмма и токи
- •5.3. Формулы Молла – Эберса
- •5.4. Вольт‑амперные характеристики биполярного транзистора в активном режиме
- •5.5. Дифференциальные параметры биполярных транзисторов в схеме с общей базой
- •5.6. Коэффициент инжекции
- •5.7. Коэффициент переноса. Фундаментальное уравнение теории транзисторов
- •5.8. Дифференциальное сопротивление эмиттерного перехода
- •5.9. Дифференциальное сопротивление коллекторного перехода
- •5.10. Коэффициент обратной связи
- •5.11. Объемное сопротивление базы
- •5.12. Тепловой ток коллектора
- •5.13. Биполярный транзистор в схеме с общим эмиттером
- •5.14. Эквивалентная схема биполярного транзистора
- •5.15. Составные транзисторы. Схема Дарлингтона
- •5.16. Дрейфовые транзисторы
- •5.17. Параметры транзистора как четырехполюсника.
- •5.18. Частотные и импульсные свойства транзисторов
- •Глава 6. Полевые транзисторы
- •6.1. Характеристики моп пт в области плавного канала
- •6.2. Характеристики моп пт в области отсечки
- •6.3. Эффект смещения подложки
- •6.4. Малосигнальные параметры
- •6.5. Эквивалентная схема и быстродействие мдп‑транзистора
- •6.6. Методы определения параметров моп пт из характеристик
- •6.7. Подпороговые характеристики мдп‑транзистора
- •6.8. Учет диффузионного тока в канале
- •6.9. Неравновесное уравнение Пуассона
- •6.10. Уравнение электронейтральности в неравновесных условиях
- •6.11. Вольт-амперная характеристика мдп‑транзистора в области сильной и слабой инверсии
- •6.12. Мдп‑транзистор как элемент памяти
- •6.13. Мноп‑транзистор
- •6.14. Моп пт с плавающим затвором
- •6.15. Приборы с зарядовой связью
- •6.16. Полевой транзистор с затвором в видер‑nперехода
- •6.17. Микроминиатюризация мдп‑приборов
- •6.18. Физические явления, ограничивающие микроминиатюризацию
- •6.19. Размерные эффекты в мдп‑транзисторах
- •Глава 7. Тиристоры
- •7.1. Общие сведения
- •7.2. Вольт‑амперная характеристика тиристора
- •7.3. Феноменологическое описание вах динистора
- •7.4. Зонная диаграмма и токи диодного тиристора в открытом состоянии
- •7.5. Зависимость коэффициента передачиαот тока эмиттера
- •7.6. Зависимость коэффициентаМот напряженияVg. Умножение в коллекторном переходе
- •7.7. Тринистор
- •7.8. Феноменологическое описание вах тринистора
- •Глава 8. Диоды Ганна
- •8.1. Общие сведения
- •8.2. Требования к зонной структуре полупроводников
- •8.3. Статическая вах арсенида галлия
- •8.4. Зарядовые неустойчивости в приборах с отрицательным дифференциальным сопротивлением
- •8.5. Генерация свч‑колебаний в диодах Ганна
- •Глава 9. Классификация и обозначения полупроводниковых приборов
- •9.1. Условные обозначения и классификация отечественных полупроводниковых приборов
- •9.2. Условные обозначения и классификация зарубежных полупроводниковых приборов
- •9.3. Графические обозначения и стандарты
- •9.4. Условные обозначения электрических параметров и сравнительные справочные данные полупроводниковых приборов
- •Основные обозначения
- •Обозначения приборных параметров
- •Приложение
- •1. Физические параметры важнейших полупроводников
- •2. Работа выхода из металлов (эВ)
- •3. Свойства диэлектриков
- •Список рекомендованной литературы
- •185640, Петрозаводск, пр. Ленина, 33
7.3. Феноменологическое описание вах динистора
Для объяснения ВАХ динистора используют двухтранзисторную модель. Из рисунка 7.5 следует, что тиристор можно рассматривать как соединение р‑n‑ртранзистора сn‑р‑nтранзистором, причем коллектор каждого из них соединен с базой другого. Центральный переход действует как коллектор дырок, инжектируемых переходом П1, и как коллектор электронов, инжектируемых переходом П2.
Рис. 7.5. Двухтранзисторная модель диодного тиристора
Взаимосвязь между токами эмиттера Iэ, коллектораIки статическим коэффициентом усиления по токуα1р1‑n1‑р2транзистора иα2n2‑р1‑n1транзистора следующая. Представляя динистор как два транзистора, запишем следующие соотношения.
Пусть– ток через переход П1. Тогда часть
тока
,
дошедшая до коллекторного перехода П3
,
будет равна:
. (7.1)
Если
– ток через переход П2, аналогично:
. (7.2)
Учтем
еще один фактор – лавинное умножение
в переходе П3через коэффициент
лавинного умноженияМ.
Тогда суммарный токчерез переход П3будет равен:
, (7.3)
где IК0– обратный ток перехода П3(генерационный и тепловой).
В стационарном случае токи через переходы П1, П2, и П3 равны, тогда
, (7.4)
откуда
, (7.5)
где α = α1 + α2– суммарный коэффициент передачи тока первого (p1‑n1‑p2) и второго (n2‑p2‑n1) транзисторов.
Выражение (7.5) в неявном виде описывает ВАХ диодного тиристора на «закрытом» участке, поскольку коэффициенты Миαзависят от приложенного напряженияVG. По мере ростаαиМ с ростомVG, когда значениеМ(α1 + α2) станет равно 1, из уравнения (7.5) следует, что токIустремится к ∞. Это условие и есть условие переключения тиристора из состояния «закрыто» в состояние «открыто».
Напряжение переключения Uпереклсоставляет у тиристоров от 20-50 В до 1000-2000 В, а ток переключенияIперекл– от долей микроампера до единиц миллиампера (в зависимости от площади).
Таким образом, в состоянии «закрыто» тиристор должен характеризоваться малыми значениями αиМ, а в состоянии «открыто» – большими значениями коэффициентовαиМ.
В закрытом состоянии (α– малы) все приложенное напряжение падает на коллекторном переходе П3и ток тиристора – это ток обратно смещенногоp‑nперехода. Энергетическая диаграмма тиристора в состоянии равновесия приведена ранее на рисунке 7.1, а в режиме прямого смещения («+» на слоер1) в закрытом состоянии представлена на рисунке 7.6.
Рис. 7.6. Зонная диаграмма и токи в тиристоре в закрытом состоянии [5]
Если полярность напряжения между анодом и катодом сменить на обратную, то переходы П1и П3будут смещены в обратном направлении, а П2– в прямом. ВАХ тиристора в этом случае будет обычная ВАХ двух обратносмещенныхp‑nпереходов.
7.4. Зонная диаграмма и токи диодного тиристора в открытом состоянии
В открытом состоянии (α– велики) все три перехода смещены в прямом направлении. Это происходит вследствие накопления объемных зарядов в базахn2,p2тиристора.
Действительно, при больших значениях коэффициента передачи α2электроны, инжектированные изn2‑эмиттера вр2‑базу, диффундируют кр‑nпереходу коллектора П3, проходят его и попадают вn1‑базу. Дальнейшему прохождению электронов по тиристорной структуре препятствует потенциальный барьер эмиттерного перехода П1. Поэтому часть электронов, оказавшись в потенциальной ямеn1‑базы, образует отрицательный избыточный заряд.
Инжектированные дырки из эмиттера р1в базуn1диффундируют кр‑nпереходу коллектора П3, проходят через него и попадают в базур2. Дальнейшему их продвижению препятствует потенциальный барьер эмиттерного перехода П2. Следовательно, в базер2происходит накопление избыточного положительного заряда.
В результате накопления избыточного положительного заряда в базе р2и отрицательного заряда в базеn1переход П3смещается в прямом направлении, происходит резкое увеличение тока и одновременное уменьшение падения напряжения на тиристоре.
На рисунке 7.7 приведена зонная диаграмма тиристора с накопленным объемным зарядом в обеих базах n1ир2.
Величина падения напряжения в прямом участке ВАХ составляет прямое напряжение на трех прямо смещенных p‑nпереходах и имеет величину порядка 1‑2 вольт.
Зонная диаграмма тиристора в открытом состоянии имеет вид, приведенный на рисунке 7.7, когда на всех p‑nпереходах прямое смещение, на П1и П2за счет внешнего напряжения, и на П3за счет объемных зарядов в базах Б1и Б2.
Рис. 7.7. Зонная диаграмма и токи тиристора в открытом состоянии (везде прямое смещение)
Таким образом, тиристор имеет два устойчивых состояния: малый ток, большое напряжение, высокое сопротивление и большой ток, малое напряжение, малое сопротивление. Переход тиристора из «закрытого» в «открытое» состояние связан с накоплением объемного заряда в базах Б1и Б2из-за роста значения коэффициента передачи эмиттерного токаαи коэффициента умноженияМ.
То есть рост α,Мс ростом токаJи напряженияVGв тиристоре является причиной перехода тиристора из состояния “закрытого” в состояние “открытого”.
В открытом состоянии тиристор находится до тех пор, пока за счет проходящего тока поддерживаются избыточные заряды в базах, необходимые для понижения высоты потенциального барьера коллекторного перехода до величины, соответствующей прямому его включению. Если же ток уменьшить до значения Iу, то в результате рекомбинации избыточные заряды в базах уменьшатся,р‑nпереход коллектора окажется включенным в обратном направлении, произойдет перераспределение падений напряжений нар‑nпереходах, уменьшатся коэффициенты передачиαи тиристор перейдет в закрытое состояние.
Таким образом, тиристор в области прямых смещений (прямое включение) является бистабильным элементом, способным переключаться из закрытого состояния с высоким сопротивлением и малым током в открытое состояние с низким сопротивлением и большим током, и наоборот.