
- •В. А. Гуртов Твердотельная электроника
- •Глава 1. Необходимые сведения из физики твердого тела и физики полупроводников 7
- •Глава 1. Необходимые сведения из физики твердого тела и физики полупроводников
- •1.1. Зонная структура полупроводников
- •1.2. Терминология и основные понятия
- •1.3. Статистика электронов и дырок в полупроводниках
- •1.3.1. Распределение квантовых состояний в зонах
- •1.3.2. Концентрация носителей заряда и положение уровня Ферми
- •1.4. Концентрация электронов и дырок в собственном полупроводнике
- •1.5. Концентрация электронов и дырок в примесном полупроводнике
- •1.6. Определение положения уровня Ферми
- •1.7. Проводимость полупроводников
- •1.8. Токи в полупроводниках
- •1.9. Неравновесные носители
- •1.10. Уравнение непрерывности
- •Глава 2. Барьеры Шоттки,p-nпереходы и гетеропереходы
- •2.1. Ток термоэлектронной эмиссии
- •2.2. Термодинамическая работа выхода в полупроводникахp‑иn‑типов
- •2.3. Эффект поля, зонная диаграмма при эффекте поля
- •2.4. Концентрация электронов и дырок в области пространственного заряда
- •2.5. Дебаевская длина экранирования
- •2.6. Контакт металл – полупроводник. Барьер Шоттки
- •2.7. Зонная диаграмма барьера Шоттки при внешнем напряжении
- •2.8. Распределение электрического поля и потенциала в барьере Шоттки
- •2.9. Вольт‑амперная характеристика барьера Шоттки
- •2.10. Образование и зонная диаграммар-nперехода
- •2.10.1. Распределение свободных носителей вp‑nпереходе
- •2.10.3. Поле и потенциал вp‑nпереходе
- •2.11. Компоненты тока и квазиуровни Ферми вр‑nпереходе
- •2.12. Вольт‑амперная характеристикар‑nперехода
- •2.14. Гетеропереходы
- •Глава 3. Физика поверхности и мдп-структуры
- •3.1. Область пространственного заряда (опз) в равновесных условиях
- •3.1.1. Зонная диаграмма приповерхностной области полупроводника в равновесных условиях
- •3.2. Заряд в области пространственного заряда
- •3.2.1. Уравнение Пуассона для опз
- •3.2.2. Выражение для заряда в опз
- •3.2.3. Избыток свободных носителей заряда
- •3.2.4. Среднее расстояние локализации свободных носителей от поверхности полупроводника
- •3.2.5. Форма потенциального барьера на поверхности полупроводника
- •2. Обеднение и слабая инверсия в примесном полупроводнике
- •3. Область обогащения и очень сильной инверсии в примесном полупроводнике
- •3.3. Емкость области пространственного заряда
- •3.4. Влияние вырождения на характеристики опз полупроводника
- •3.5. Поверхностные состояния
- •3.5.1. Основные определения
- •3.5.2. Природа поверхностных состояний
- •3.5.3. Статистика заполнения пс
- •3.6. Вольт‑фарадные характеристики структур мдп
- •3.6.1. Устройство мдп‑структур и их энергетическая диаграмма
- •3.6.2. Уравнение электронейтральности
- •3.6.3. Емкость мдп‑структур
- •3.6.4. Экспериментальные методы измерения вольт‑фарадных характеристик
- •КвазистатическийC‑Vметод
- •Метод высокочастотныхC‑Vхарактеристик
- •3.6.5. Определение параметров мдп‑структур на основе анализаC‑V характеристик
- •3.6.6. Определение плотности поверхностных состояний на границе раздела полупроводник – диэлектрик
- •3.7. Флуктуации поверхностного потенциала в мдп‑структурах
- •3.7.1. Виды флуктуаций поверхностного потенциала
- •3.7.2. Конденсаторная модель Гоетцбергера для флуктуаций поверхностного потенциала
- •3.7.3. Среднеквадратичная флуктуация потенциала, обусловленная системой случайных точечных зарядов
- •3.7.4. Потенциал, создаваемый зарядом, находящимся на границе двух сред с экранировкой
- •3.7.5. Потенциальный рельеф в мдп‑структуре при дискретности элементарного заряда
- •3.7.6. Функция распределения потенциала при статистических флуктуациях
- •3.7.7. Зависимость величины среднеквадратичной флуктуации от параметров мдп-структуры
- •3.7.8. Пространственный масштаб статистических флуктуаций
- •3.7.9. Сравнительный анализ зависимости среднеквадратичной флуктуацииσψи потенциала оптимальной флуктуации
- •Глава 4. Полупроводниковые диоды Введение
- •4.1. Характеристики идеального диода на основеp‑nперехода
- •4.1.1. Выпрямление в диоде
- •4.1.2. Характеристическое сопротивление
- •4.1.4. Эквивалентная схема диода
- •4.2. Варикапы
- •4.3. Влияние генерации, рекомбинации и объемного сопротивления базы на характеристики реальных диодов
- •4.3.1. Влияние генерации неравновесных носителей в опЗp-nперехода на обратный ток диода
- •4.3.2. Влияние рекомбинации неравновесных носителей в опЗp‑n перехода на прямой ток диода
- •4.3.3. Влияние объемного сопротивления базы диода на прямые характеристики
- •4.3.4. Влияние температуры на характеристики диодов
- •4.4. Стабилитроны
- •4.5. Туннельный и обращенный диоды
- •4.6. Переходные процессы в полупроводниковых диодах
- •Глава 5. Биполярные транзисторы
- •5.1. Общие сведения. История вопроса
- •5.2. Основные физические процессы в биполярных транзисторах
- •5.2.1. Биполярный транзистор в схеме с общей базой. Зонная диаграмма и токи
- •5.3. Формулы Молла – Эберса
- •5.4. Вольт‑амперные характеристики биполярного транзистора в активном режиме
- •5.5. Дифференциальные параметры биполярных транзисторов в схеме с общей базой
- •5.6. Коэффициент инжекции
- •5.7. Коэффициент переноса. Фундаментальное уравнение теории транзисторов
- •5.8. Дифференциальное сопротивление эмиттерного перехода
- •5.9. Дифференциальное сопротивление коллекторного перехода
- •5.10. Коэффициент обратной связи
- •5.11. Объемное сопротивление базы
- •5.12. Тепловой ток коллектора
- •5.13. Биполярный транзистор в схеме с общим эмиттером
- •5.14. Эквивалентная схема биполярного транзистора
- •5.15. Составные транзисторы. Схема Дарлингтона
- •5.16. Дрейфовые транзисторы
- •5.17. Параметры транзистора как четырехполюсника.
- •5.18. Частотные и импульсные свойства транзисторов
- •Глава 6. Полевые транзисторы
- •6.1. Характеристики моп пт в области плавного канала
- •6.2. Характеристики моп пт в области отсечки
- •6.3. Эффект смещения подложки
- •6.4. Малосигнальные параметры
- •6.5. Эквивалентная схема и быстродействие мдп‑транзистора
- •6.6. Методы определения параметров моп пт из характеристик
- •6.7. Подпороговые характеристики мдп‑транзистора
- •6.8. Учет диффузионного тока в канале
- •6.9. Неравновесное уравнение Пуассона
- •6.10. Уравнение электронейтральности в неравновесных условиях
- •6.11. Вольт-амперная характеристика мдп‑транзистора в области сильной и слабой инверсии
- •6.12. Мдп‑транзистор как элемент памяти
- •6.13. Мноп‑транзистор
- •6.14. Моп пт с плавающим затвором
- •6.15. Приборы с зарядовой связью
- •6.16. Полевой транзистор с затвором в видер‑nперехода
- •6.17. Микроминиатюризация мдп‑приборов
- •6.18. Физические явления, ограничивающие микроминиатюризацию
- •6.19. Размерные эффекты в мдп‑транзисторах
- •Глава 7. Тиристоры
- •7.1. Общие сведения
- •7.2. Вольт‑амперная характеристика тиристора
- •7.3. Феноменологическое описание вах динистора
- •7.4. Зонная диаграмма и токи диодного тиристора в открытом состоянии
- •7.5. Зависимость коэффициента передачиαот тока эмиттера
- •7.6. Зависимость коэффициентаМот напряженияVg. Умножение в коллекторном переходе
- •7.7. Тринистор
- •7.8. Феноменологическое описание вах тринистора
- •Глава 8. Диоды Ганна
- •8.1. Общие сведения
- •8.2. Требования к зонной структуре полупроводников
- •8.3. Статическая вах арсенида галлия
- •8.4. Зарядовые неустойчивости в приборах с отрицательным дифференциальным сопротивлением
- •8.5. Генерация свч‑колебаний в диодах Ганна
- •Глава 9. Классификация и обозначения полупроводниковых приборов
- •9.1. Условные обозначения и классификация отечественных полупроводниковых приборов
- •9.2. Условные обозначения и классификация зарубежных полупроводниковых приборов
- •9.3. Графические обозначения и стандарты
- •9.4. Условные обозначения электрических параметров и сравнительные справочные данные полупроводниковых приборов
- •Основные обозначения
- •Обозначения приборных параметров
- •Приложение
- •1. Физические параметры важнейших полупроводников
- •2. Работа выхода из металлов (эВ)
- •3. Свойства диэлектриков
- •Список рекомендованной литературы
- •185640, Петрозаводск, пр. Ленина, 33
4.1.4. Эквивалентная схема диода
С учетом полученных дифференциальных параметров можно построить эквивалентную малосигнальную схему диода для низких частот (рис. 4.3а, б, в). В этом случае наряду с уже описанными элементами – дифференциальным сопротивлением (рис. 4.3а) и емкостями диода (рис. 4.3б) необходимо учесть омическое сопротивление квазинейтрального объема базы (rоб) диода. Сопротивление квазинейтрального объема эмиттера можно не учитывать, поскольку в диодах эмиттер обычно легирован существенно более сильно, чем база.
Рис. 4.3. Приборные характеристики и эквивалентная малосигнальная схема для выпрямительных диодов [23, 24]:
а) зависимость дифференциального сопротивления диода ГД402 от величины тока при прямом смещении;б) зависимость емкости диода ГД402 от обратного напряжения;в) эквивалентная малосигнальная схема диода для низких частот
4.2. Варикапы
Зависимость барьерной емкости СБот приложенного обратного напряженияVGиспользуется для приборной реализации. Полупроводниковый диод, реализующий эту зависимость, называетсяварикапом. Максимальное значение емкости варикап имеет при нулевом напряженииVG. При увеличении обратного смещения емкость варикапа уменьшается. Функциональная зависимость емкости варикапа от напряжения определяется профилем легирования базы варикапа. В случае однородного легирования емкость обратно пропорциональна корню из приложенного напряженияVG. Задавая профиль легирования в базе варикапаND(x), можно получить различные зависимости емкости варикапа от напряженияC(VG) – линейно убывающие, экспоненциально убывающие. На рисунке 4.4 показана зависимость емкости варикапов различных марок от приложенного напряжения.
Рис. 4.4. Конструкция варикапа (а) и зависимость емкости варикапа от напряжения для различных варикапов (б – КВ116А,в – КВ126А,г – КВ130А) [23, 25]
4.3. Влияние генерации, рекомбинации и объемного сопротивления базы на характеристики реальных диодов
В реальных выпрямительных диодах на основе p‑nперехода при анализе вольт‑амперных характеристик необходимо учитывать влияние генерационно-рекомбинационных процессов в обедненной областиp‑nперехода и падение напряжения на омическом сопротивлении базыp‑nперехода при протекании тока через диод.
При рассмотрении влияния генерационно‑рекомбинационных процессов в ОПЗ p‑nперехода будем считать, что доминирующим механизмом генерационно-рекомбинационного процесса является механизм Шокли – Рида. В этом случае для моноэнергетического рекомбинационного уровня, расположенного вблизи середины запрещенной зоны полупроводника, выражение для темпа генерации (рекомбинации) имеет вид:
. (4.6)
Параметры, входящие в соотношение 4.10, имеют следующие значения:
γn,γp– вероятности захвата электронов и дырок на рекомбинационный уровень;
Nt– концентрация рекомбинационных уровней;
n,p– концентрации неравновесных носителей;
n1,p1– концентрации равновесных носителей в разрешенных зонах при условии, что рекомбинационный уровень совпадает с уровнем Ферми.
Из уравнений 4.6 и 1.20 следует, что при прямом смещении (VG > 0) произведение концентрации неравновесных носителейp·nбудет больше, чем произведение концентрации равновесных носителейp1·n1(p·n > p1·n1). Следовательно, правая часть уравнения 4.6 будет положительная, а скорость изменения концентрации неравновесных носителейdn/dtбудет отрицательной. Таким образом, концентрация неравновесных носителей будет убывать и рекомбинация будет преобладать над генерацией.
При обратном смещении (VG < 0) соотношения будут обратными, концентрация неравновесных носителей будет возрастать и генерация будет преобладать над рекомбинацией. Рассмотрим более подробно эти процессы.