
- •Е.А. Михайлов, ю. С. Кашенков, а. Г. Маланов
- •Введение
- •1. Основные проблемы выбора методов водоподготовки
- •1.1. Основные виды водозабора для энергетических предприятий коммунального хозяйства
- •1.2. Выбор методов химводоподготовки
- •1.3. Влияние эффективности химводоподготовки на технико-экономические показатели работы оборудования
- •Отложений солей жесткости
- •1.4. Контроль процессов водоподготовки на коммунальных теплоэнергетических объектах области
- •1.5. Современное состояние развития систем химводоподготовки и подготовка инженерных кадров для этих целей
- •1.6. Требования мчс рф, Минздрава рф, Минэкологии рф и органов гтн к системам химводоподготовки
- •2. Основные загрязняющие компоненты природных вод и их влияние на процессы в теплоэнергетике
- •2.1. Неорганические вещества
- •2.1.1. Кислород
- •2.1.2. Кальций
- •2.1.3. Магний
- •2.1.4. Кремний
- •2.1.5. Углерод
- •2.1.6. Азот общий
- •2.1.7. Фосфор общий
- •2.1.8. Сера
- •2.1.9. Натрий
- •2.1.10. Калий
- •2.1.11. Фтор
- •2.1.12. Хлор
- •2.1.13. Бром
- •2.1.16. Цианиды
- •2.1.17. Роданиды (тиоцианаты)
- •2.1.18. Стронций
- •2.1.19. Алюминий
- •2.1.20. Титан
- •2.2. Органические вещества
- •0,1 Мг/дм3 - для остальных участков водоемов.
- •2.3. Общие показатели качества вод
- •2.4. Тяжелые металлы
- •3. Проблемы подготовки воды к процессам тепломассообмена
- •3.1.1. Умягчение
- •3.1.2. Обезжелезивание
- •3.1.3. Стабилизационная обработка воды
- •3.1.4. Очистка воды от растворенных газов
- •3.1.4.1. Деаэрация
- •3.1.4.2. Декарбонизация
- •Насадочного декарбонизатора:
- •От концентрации углекислоты в воде до декарбонизатора при концентрации со2 в декарбонизованной воде 3 (1), 5 (2) и 10 (3) мг/л соответственно
- •Десорбции от температуры, обрабатываемой воды
- •4. Современные конструкции аппаратов для проведения процессов водоподготовки
- •4.1. Аппараты для умягчения воды
- •1) Фильтры "фип".
- •2) Автоматизированные аппараты дозирования химических реагентов типа «Комплексон».
- •2) Автоматизированные аппараты дозирования химических реагентов типа «Комплексон»
- •Водоподготовительного оборудования
- •3) Оборудование для дозирования реагентов фирмы ооо "Аркон-хим", г. Москва.
- •4) Антинакипной электрохимический аппарат марки аэа-т, изготовитель - оао "Азов".
- •Электрохимических аппаратов марки аэа-т оао "Азов"
- •5) Аппарат нехимической водоподготовки фирмы aquatech (Словакия).
- •6) Электронный преобразователь солей жесткости «Термит»
- •7) Приборы «Water King»
- •8) Современное оборудование и технологии очистки воды фирмы "Национальные водные ресурсы"
- •Модели «Соло» серии аква
- •Серии «Нептун»
- •Серии 5р-малогабаритные
- •Серии 8р – производственные
- •Серии 3р-а
- •4.2. Аппараты для процессов декарбонизации
- •4.3. Аппараты для процессов деаэрации
- •5. Учет тепла в коммунальной энергетике
- •5.1. Актуальность реконструкции приборов учета
- •5.2. Требования к приборам учета тепловой энергии на источнике теплоты
- •5.3. Обзор приборов учета тепла
- •5.3.1. Элементы, определяющие метрологические характеристики теплосчетчика на трубопроводах больших диаметров
- •5.3.2. Методы измерений, положенные в основу работы расходомеров, их достоинства и недостатки
- •5.4. Анализ характеристик расходомеров на основе результатов их практического использования
- •5.4.1. Сложность монтажа
- •5.4.2. Сложность проведения монтажа в условиях пуско-наладочных работ
- •5.4.3. Надежность работы расходомеров
- •5.4.4. Точность измерений
- •5.4.5. Возможность измерения расхода в случае реверса теплоносителя
- •Заключение
- •Библиографический список
- •Оглавление
- •Методы подготовки питательной воды котлов
2.1.12. Хлор
Хлор, присутствующий в воде в виде хлорноватистой кислоты или иона гипохлорита, принято называть свободным хлором. Хлор, существующий в виде хлораминов (моно- и ди-), а также в виде треххлористого азота, называют связанным хлором. Общий хлор – это сумма свободного и связанного хлора.
Свободный хлор достаточно часто применяют для дезинфекции питьевой и сточной воды. В промышленности хлор используют при отбеливании в бумажном производстве, производстве ваты, для уничтожения паразитов в холодильных установках и т.д. При растворении хлора в воде образуются соляная и хлорноватистая кислоты:
С12 + Н2О <=> Н+ + Сl- + НСlО
В зависимости от условий, таких как рН, температура, количество органических примесей и аммонийного азота, хлор может присутствовать и в других формах, включая ион гипохлорита (ОСГ) и хлорамины.
Активный хлор должен отсутствовать в воде водоемов, лимитирующий показатель вредности общесанитарный.
Хлориды
В речных водах и водах пресных озер содержание хлоридов колеблется от долей миллиграмма до десятков, сотен, а иногда и тысяч миллиграммов на литр. В морских и подземных водах содержание хлоридов значительно выше - вплоть до пересыщенных растворов и рассолов.
Хлориды являются преобладающим анионом в высокоминерализованных водах. Концентрация хлоридов в поверхностных водах подвержена заметным сезонным колебаниям, которые коррелируют с изменением общей минерализации воды.
Первичными источниками хлоридов являются магматические породы, в состав которых входят хлорсодержащие минералы (содалит, хлорапатит и др.), соленосные отложения, в основном галит.
Значительные количества хлоридов поступают в воду в результате обмена с океаном через атмосферу, взаимодействия атмосферных осадков с почвами, особенно засоленными, а также при вулканических выбросах. Возрастающее значение приобретают промышленные и хозяйственно-бытовые сточные воды.
В отличие от сульфатных и карбонатных ионов, хлориды не склонны к образованию ассоциированных ионных пар. Из всех анионов хлориды обладают наибольшей миграционной способностью, что объясняется их хорошей растворимостью, слабо выраженной способностью к сорбции на взвесях и потреблением водными организмами.
Повышенные содержания хлоридов ухудшают вкусовые качества воды и делают ее малопригодной для питьевого водоснабжения и ограничивают применение для многих технических и хозяйственных целей, а также для орошения сельскохозяйственных угодий.
Если в питьевой воде есть ионы натрия, то концентрация хлорида выше 250 мг/дм3 придает воде соленый вкус. Концентрации хлоридов и их колебания, в том числе суточные, могут служить одним из критериев загрязненности водоема хозяйственно-бытовыми стоками.
Нет данных о том, что высокие концентрации хлоридов оказывают вредное влияние на человека. ПДК составляет 350 мг/дм3.
2.1.13. Бром
Источником поступления бромидов могут быть грунтовые или подземные воды либо сточные воды предприятий химической промышленности.
Бромиды щелочных и щелочноземельных металлов (NaBr, KBr, MgBr2) встречаются в морской воде (0,065%), рапе соляных озер (до 0,2%) и подземных рассолах, обычно связанных с соляными и нефтяными месторождениями (до 0,1%). Содержание брома в подземных водах увеличивается с ростом минерализации.
Пресные воды отличаются, как правило, минимальными концентрациями брома, колеблющимися от 0,001 до 0,2 мг/дм3. Однако, сравнительно много брома в водах минеральных источников (до 10-50 мг/дм3).
ПДК бромид-иона составляет 0,2 мг/дм3.
2.1.14. Йод
Рассеянный йод выщелачивается природными водами из магматических горных пород и концентрируется организмами, например водорослями. Йод концентрируется в почвах и илах. Важным источником йода в почвах и водах являются дождевые осадки, захватывающие йод из атмосферы, в которую он приносится ветром со стороны моря.
Источниками поступления йода в поверхностные воды являются атмосферные осадки, воды нефтяных месторождений и сточные воды некоторых отраслей химической и фармацевтической промышленности.
В речных водах концентрация йода составляет от 1 до 74 мкг/дм3, в атмосферных осадках от 0 до 65 мкг/дм3, в подземных водах от 0,1 до 3 мкг/дм3. Содержание йода учитывается при санитарной оценке природных вод.
ПДК не установлена.
С недостаточностью йода в пище связано тяжелое заболевание щитовидной железы у человека (эндемический зоб).
2.1.15. Бор
Источником бора в природных водах являются подземные воды, обогащенные бором за счет бороносных осадочно-метаморфических пород (борацит, бура, калиборит, улексит, колеманит, ашарит). Возможно поступление со сточными водами стекольного, металлургического, машиностроительного, текстильного, керамического, кожевенного производств, а также с бытовыми сточными водами, насыщенными стиральными порошками.
Локальное загрязнение почвы возможно при разработке борсодержащих руд и внесение в нее борсодержащих удобрений.
В природных водах находится в виде ионов борных кислот. В щелочной среде преимущественно в виде метаборат-иона (ВО2-). По мере понижения рН среды все большая роль будет принадлежать ортоборной кислоте (происходит частичная диссоциация кислоты на ионы Н2ВО3-2 и ВО33-).
Средняя концентрация в речных водах 100 мкг/дм3.
Малотоксичен для рыб. Оксид бора и ортоборная кислота относятся к сильнодействующим токсичным веществам с политропным действием. Обладают эмбриотоксическим действием. В связи с употреблением воды из богатых бором водоисточников возникает хроническая интоксикация
ПДК - 0,3 мг/дм3, ПДК ортоборной кислоты (Н3ВО3) – 0,1 мг/дм3.