
- •Области применения ит - информационных технологий
- •Современные ит - информационные технологии
- •Цели внедрения информационных технологий
- •Этапы развития ит (информационных технологий)
- •Информационная система
- •Общие понятия об информационных системах - ис
- •Основные задачи информационных систем - ис
- •Пользователи информационных систем - ис
- •Процессы в информационных системах - ис
- •Система. Общие понятия о системе
- •Современные информационные системы - ис
- •Этапы развития информационных систем - ис
- •Математическое и программное обеспечение информационных систем - ис
- •Организационное обеспечение информационных систем - ис
- •Правовое обеспечение ис - информационных систем
- •Техническое обеспечение информационной системы - ис.
- •Принципы и методы создания ис - информационных систем
- •Методы и концепции создания ис - информационных систем
- •Принципы создания информационных систем - ис
- •Классификация информационных систем - ис
- •Классификация ис по масштабности применения
- •Классификация ис по концепции построения
- •Классификация ис по оперативности обработки данных
- •Классификация ис по признаку структурированности задач
- •Классификация ис по сфере деятельности
- •Классификация информационных систем по режиму работы
- •Классификация информационных систем по степени автоматизации
- •Классификация информационных систем по функциональности
- •По квалификации персонала и управления
- •По характеру обработки информации
- •Аналитические ис репортинга, oltp, data mining
- •Общие сведения об аналитических ис репортинга, oltp, data mining
- •Базовая аналитическая система
- •Классификация по области применения
- •Классы аналитических систем
- •Перспективы использования аналитических систем
- •Применяемые виды анализа
- •Системы репортинга
- •Рынок систем репортинга
- •Oltp - системы оперативной обработки транзакций
- •Data Mining (dm) - интеллектуальный анализ данных
- •Типы закономерностей
- •Классы систем Data Mining - dm
- •Алгоритмы ограниченного перебора
- •Генетические алгоритмы
- •Деревья решений (decision trees)
- •Нейронные сети
- •Предметно-ориентированные аналитические системы
- •Системы для визуализации многомерных данных
- •Системы рассуждений на основе аналогичных случаев
- •Статистические пакеты
- •Эволюционное программирование
- •Бизнес-приложения Data Mining
- •Банковское дело
- •Медицина
- •Молекулярная и генная инженерия
- •Розничная торговля
- •Страхование
- •Телекоммуникации
- •Проблемы, связанные с использованием Data Mining dm-технологии
- •Olap-системы оперативной аналитической обработки данных
- •Недостатки olap
- •Основные преимущества olap-систем
- •Предпосылки и причины появления olap
- •Принципы проектирования и использования многомерных бд
- •Типы используемых данных
- •Многомерная модель данных
- •Гиперкубические и поликубические модели данных
- •Операции с измерениями
- •Требования к olap-средствам
- •12 Основных правил olap- систем по Кодду
- •Fasmi Пендса и Крита
- •Кубы olap
- •Спуск и консолидация
- •Члены и метки. Иерархии. Аналитические операции.
- •Классификация olap по типу доступа к бд
- •Достоинства и недостатки rolap
- •Метаданные
- •Другие olap. Holap. Dolap. Jolap.
- •По месту размещения olap - машин
- •Olap-клиент
- •Olap-сервер
- •Применение olap - систем
- •Преимущества и недостатки
- •Определение dss (сппр)
- •Характеристики dss (сппр)
- •Структура сппр
- •Бм и субм
- •Классификация
- •Основные функции субм
- •Система управления интерфейсом
- •Управление сообщениями. Электронная почта.
- •Data Warehouse – хранилище данных - хд - систем обработки данных
- •Цели и задачи хранилищ данных
- •Концепция хд - хранилища данных
- •Единый источник даннх
- •Свойства данных
- •Структура ис на основе хд
- •Методы организации хд
- •Data Mart - Витрины данных
- •Интегрированное хд - хранилище данных
- •Непроектируемые витрины данных
- •Система постепенно развиваемых витрин данных
- •Data Warehouse Bus - хд с архитектурой шины
- •Объединенное (федеративное) хд
- •Требования к техническому и программному обеспечению
- •Основные компоненты хд
- •Проблемы интеграции данных
- •Сравнение оперативных и аналитических бд
- •Средства и методы построения хд - хранилищ данных
- •Применение готовых хранилищ данных
- •Студии для построения хд - хранилищ данных
- •Подход сверху вниз
- •Подход снизу вверх
- •Рекомендации по внедрению хд
- •Финансовые хранилища данных (хд)
- •Хд для управления человеческими ресурсами
- •Хранилища данных (хд) в области телекоммуникаций
- •Хранилища данных (хд) с возможностями Data Mining и Exploration
- •Хранилища данных в области страхования
- •Тенденции развития хранилищ данных
- •Операции и процедуры
- •Функции управления
- •Принципы управления
- •Информационные технологии и системы управления
- •Информационные технологии управления
- •Информационные системы управления (ису)
- •Виды обеспечений в составе иасу
- •Уровни управления
- •Ис организационного управления (исоу)
- •Ису "Галактика"
- •Система управления Парус
- •Корпоративные информационные системы - кис
- •Определения и назначения кис
- •Перспективы развития корпоративных информационных систем (кис)
- •Современные корпоративные информационные системы
- •Структура корпоративных информационных систем
- •Требования к корпоративным базам данных
- •Требования к техническому обеспечению кис
- •Кис и Internet, Intranet-технологии
- •Особенности создания кис на базе Workflow-систем
- •Системы управления документами - суд
- •Средства обработки бумажных документов
- •Мировой рынок корпоративных информационных систем
- •Экспертные интеллектуальные ис (информационные системы)
- •Структура и типы сии
- •Терминология систем искусственного интеллекта
- •Эволюция экспертных систем
- •Второе поколение экспертных интеллектуальных систем (эис)
- •Первое поколение экспертных систем
- •Третье поколение экспертных интеллектуальных систем (эис)
- •Назначение экспертных интеллектуальных систем (эис)
- •Структура экспертных интеллектуальных систем
- •База знаний (бз). Правила.
- •Интерфейс пользователя - диалог с экспертной системой
- •Решатель (интерпретатор, дедуктивная машина)
- •Виды знаний в экспертных системах
- •Организация знаний в базе данных
- •Уровни представления и уровни детальности
- •Особенности разработки экспертных интеллектуальных систем
- •Технология разработки экспертных интеллектуальных систем
- •Основные компоненты ис офисной автоматизации
- •Ис управления бизнес-процессами
- •Определение вмр( управление бизнес-процессами)
- •Примеры использования вмр(Business Performance Management)
- •Ис банковской деятельности
- •Программно-техническая платформа абс(автоматизированной банковской системы)
- •Функциональная структура абс (автоматизированной банковской системы)
- •Районный уровень статистичекой службы Украины
- •Региональный (областной) уровень статистичекой службы Украины
- •Центральный (государственный) уровень статистичекой службы Украины
- •Ис в налоговых органах Украины
- •Автоматизированная информационная система (аис) «Налоги»
- •Ис(информационная система) в страховании
- •Функциональные подсистемы аис «Страхование»
- •Информационное обеспечение системы страхования
- •Ис(информационные системы) управления персоналом
- •Функциональная направленность систем управления персоналом
- •Эффекты от внедрения hr-систем управления персоналом
- •Ис(информационные системы) на основе производственных стандартов
- •Эволюция стандартов планирования производства
- •Стандарт mrp II (Manufacturing Resource Planning)
- •Подробнее об mrp1 - стандарте планирования материальных ресурсов
- •Входные элементы mrp-системы
- •Основные операции, достоинства и недостатки mrp-системы
- •Преимущества и процесс планирования mrp-систем
- •Принцип работы mrp-системы и результаты работы
- •Требования к производству для успешного внедрения mrp-системы
- •Цели и задачи системы-mpr
- •Процесс crp(Capacity Requirements Planning)
- •Входные данные crp(Capacity Requirements Planning)
- •Значение crp(Capacity Requirements Planning)
- •Подробнее о mrpii - стандарте планирование производственных ресурсов
- •Процессы mprii
- •Цели и задачи системы-mprii
- •Функциональные блоки mrp II
- •Планирование потребностей в сырье и материалах
- •Главный календарный план производства
- •Инструментальное обеспечение
- •Интерфейс с финансовым планированием
- •Оценка деятельности ( Performance Measurement ) в mrp II
- •Планирование продаж и операций
- •Планирование ресурсов распределения
- •Управление входным и выходным материальным потоком в mrp II
- •Преимущества mprii
- •Концепция erp-системы
- •Структура erp - системы
- •Общая характеристика erp
- •Преимущества erp - системы
- •Csrp - стандарт(Customer Synchronized Resource Planning) и система
- •Современная концепция управления ресурсами csrp
- •Преимущества csrp
- •Жизненный цикл - общие понятия
- •Жизненный цикл изделия (жци)
- •Этапы жци
- •Классификация данных в связи со стадиями жци
- •Маркетинг и исследование жизненного цикла.
- •Разработка-производство жц
- •Этапы жц промышленных изделий и системы их автоматизации
- •Жизненный цикл ис
- •Жизненный цикл производственных ис
- •Cals-методология поддержки жц ис
- •Cals-стратегия
- •Cals-технологии
- •Базовые принципы cals-технологии
- •Безмужаное представление информации
- •Виртуальное производство
- •Интегрированная информационная среда cals
- •Концепция cals
- •Параллельный инжиниринг
- •Реинжиниринг бизнес-процессов
- •Системы cals
- •Управление процессами
- •Стандарты cals
- •Другие стандарты cals
- •Стандарт iso 10303 (step)
- •Стандарт iso 13584 (p_lib) и семейство стандартов idef
- •Применение cals
Типы закономерностей
Выделяют пять стандартных типов закономерностей (алгоритмов), выявляемых методами DM. Типы алгоритмов, выявляемых методами DM - Data Mining:
Имеет место в том случае, если несколько событий с высокой вероятностью связаны друг с другом (например, один товар часто приобретается вместе с другим). Пример. Исследование, проведенное в супермаркете, может показать, что 65% купивших кукурузные чипсы берут также и "кока-колу", а при наличии скидки за такой комплект "колу" приобретают в 85% случаев. Располагая сведениями о подобной ассоциации, менеджерам легко оценить, насколько действенна предоставляемая скидка.
Высокая вероятность цепочки связанных во времени событий (например, в течение определенного срока после приобретения одного товара будет с высокой степенью вероятности приобретен другой. Пример. После покупки дома в 45% случаев в течение месяца приобретается и новая кухонная плита, а в пределах двух недель 60% новоселов обзаводятся холодильником.
Выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект или событие. Это делается посредством анализа уже классифицированных объектов и формулирования некоторого набора правил.
Отличается от классификации тем, что сами группы заранее не заданы. С помощью кластеризации средства DM самостоятельно выделяют различные однородные группы данных.
Наличие шаблонов в динамике поведения тех или иных данных (типичный пример — сезонные колебания спроса на те или иные товары либо услуги), используемых для прогнозирования . Именно историческая информация, хранящаяся в БД в виде временных рядов, служит основой для всевозможных систем. Если удается найти шаблоны, адекватно отражающие динамику поведения целевых показателей, есть вероятность, что с их помощью можно предсказать и поведение системы в будущем. |
Классы систем Data Mining - dm
DM - Data Mining - является мультидисциплинарной областью, возникшей и развивающейся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории БД и др. (см. рисунок). Отсюда обилие методов, алгоритмов и математических правил, реализованных в различных действующих системах DM , среди них можно выделить:
Реализован в большинстве современных статистических пакетов, в частности в продуктах компаний SAS Institute, StatSoft и др.;
Необходимость в фильтрации возникает, когда нужно отделить полезную информацию от искажающего его шума за счет сглаживания, очистки, редактирования аномальных значений, устранения незначащих факторов, понижения размерности информации и т.д. Применение фильтрации в системах анализа данных относится к первичной обработке данных и позволяет повысить качество исходных данных, а, следовательно, и точность результата анализа.
Анализ эмпирических моделей конкретной предметной области, часто применяемые, например, в недорогих средствах финансового анализа;
Кластерный анализ подразделяет гетерогенные данные на гомогенные или полугомогенные группы для объединения сходных событий в группы на основании сходных значений нескольких полей в наборе данных. Метод позволяет классифицировать наблюдения по ряду общих признаков. Кластеризация расширяет возможности прогнозирования. Кластерные модели (иногда также называемые моделями сегментации) весьма популярны при создании систем прогнозирования
Нейросетевые алгоритмы, идея которых основана на аналогии с функционированием нервной ткани и заключается в том, что исходные параметры рассматриваются как сигналы, преобразующиеся в соответствии с имеющимися связями между «нейронами», а в качестве ответа, являющегося результатом анализа, рассматривается отклик всей сети на исходные данные. Здесь для предсказания значения целевого показателя используется наборы входных переменных, математических функций активации и весовых коэффициентов входных параметров. Нейронные сети реализуют алгоритмы на основе сетей обратного распространения ошибки, самоорганизующихся карт Кохонена, RBF-сетей, сетей Хэмминга и других подобных алгоритмов анализа данных.
Ассоциативные правила выявляют причинно следственные связи и определяют вероятности или коэффициенты достоверности, позволяя делать соответствующие выводы. Примером такого правила служит утверждение, что в том случае, если произошло событие А, то произойдет и событие В с вероятностью C. Их можно использовать для прогнозирования или оценки неизвестных параметров (значений). Впервые это задача была предложена для нахождения типичных шаблонов покупок, совершаемых в супермаркетах, поэтому иногда ее еще называют анализом рыночной корзины (market basket analysis).
Иерархическая структура, базирующаяся на наборе вопросов, подразумевающих ответ «Да» или «Нет». Позволяют представлять правила в последовательной структуре, где каждому объекту соответствует единственный узел, дающий решение. Под правилом понимается логическая конструкция, представленная в виде "если... то...". Определяют естественные "разбивки" в данных, основанные на целевых переменных. Деревья решений применяются при решении задач поиска оптимальных решенийна основе описанной модели поведения.
(Memory-based Reasoning, MBR/ Case-Based Reasoning, CBR) — выбор близкого аналога исходных данных из уже имеющихся исторических данных. Эти алгоритмы основаны на обнаружении некоторых аналогий в прошлом, наиболее близких к текущей ситуации, с тем чтобы оценить неизвестное значение или предсказать возможные результаты (последствия)Называются также методом «ближайшего соседа»;
Алгоритмы ограниченного перебора, вычисляющие частоты комбинаций простых логических событий в подгруппах данных;
Этот метод использует итеративный процесс эволюции последовательности поколений моделей, включающий операции отбора, мутации и скрещивания. Генетические алгоритмы применяются при решении задач оптимизации. Эти методы были открыты при изучении эволюции и происхождения видов. Для отбора определенных особей и отклонения других используется "функция приспособленности" (fitness function).
Поиск и генерация алгоритма, выражающего взаимозависимость данных, на основании изначально заданного алгоритма, модифицируемого в процессе поиска; иногда поиск взаимозависимостей осуществляется среди каких-либо определенных видов функций (например, по линомов).
Каждый из методов имеет свои преимущества и недостатки. Преимущество деревьев решений и ассоциативных правил состоит в их читабельности - они похожи на предложения на естественном языке. Однако при большом количестве факторов данных бывает очень сложно понять смысл такого представления. Недостаток: они не предназначены для широких числовых интервалов. Это связано с тем, что каждое правило или узел в дереве решений представляет одну связь (зависимость, отношение). Чтобы представить зависимости для большого интервала значений потребуется слишком много правил или узлов. Преимущество нейронных сетей в компактном представлении числовых отношений для широкого диапазона значений. А недостаток - в сложности интерпретации. |