Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_MATAN.doc
Скачиваний:
375
Добавлен:
02.05.2015
Размер:
2.76 Mб
Скачать

10.Предельный переход в неравенствах.

Ответ -  Арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами. В этом пункте покажем, что неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей.

Теорема. Если элементы сходящейся последовательности {xn}, начиная с некоторого номера, удовлетворяют неравенству xn ≥ b (xn ≤ b), то и предел a этой последовательности удовлетворяет неравенству a ≥ b (a ≤ b).

     Доказательство. Пусть все элементы xn, по крайней мере начиная с некоторого номера, удовлетворяют неравенству xn ≥ b. Требуется доказать неравенство a ≥ b. Предположим, что a < b. Поскольку a - предел последовательности {xn}, то для положительного ε = b - a можно указать номер N такой, что при n ≥ N выполняется неравенство |xn - a| < b - a. Это неравенство эквивалентно следующим двум неравенствам: -(b - a) < xn - a < b - a. Используя правое из этих неравенств, получим xn < b, а это противоречит условию теоремы. Случай xn ≤ bрассматривается аналогично. Теорема доказана.

     Замечание. Элементы сходящейся последовательности {xn} могут удовлетворять строгому неравенству xn > b, однако при этом предел a может оказаться равным b. Например, если , тоxn > 0, однако.

     Следствие 1. Если элементы xn и yn сходящихся последовательностей {xn} и {yn}, начиная с некоторого номера, удовлетворяют неравенству xn ≤ yn, то их пределы удовлетворяют такому же неравенству:

     В самом деле, элементы последовательности {yn - xn} неотрицательны, а поэтому неотрицателен и ее предел . Отсюда следует, что

11.Предел функции в точке.

Ответ - Предел фу́нкции (предельное значение функции) в заданной точке, предельнойдля области определения функции, — такая величина, к которой стремится рассматриваемаяфункцияпри стремлении её аргумента к данной точке.

Предел функции является обобщением понятия предела последовательности: изначально под пределом функции в точке понимали предел последовательности элементов области значений функции, составленной из образов точек последовательности элементов области определения функции, сходящейся к заданной точке (предел в которой рассматривается); если такой предел существует, то говорят, что функция сходится к указанному значению; если такого предела не существует, то говорят, что функция расходится.

Наиболее часто определение предела функции формулируют на языке окрестностей. То, что предел функции рассматривается только в точках, предельных для области определения функции, означает, что в каждой окрестности данной точки есть точки области определения; это позволяет говорить о стремлении аргумента функции (к данной точке). Но предельная точка области определения не обязана принадлежать самой области определения: например, можно рассматривать предел функции на концах открытого интервала, на котором определена функция (сами концы интервала в область определения не входят).

В общем случае необходимо точно указывать способ сходимости функции, для чего вводят т.н. базу подмножествобласти определения функции, и тогда формулируют определение предела функции по (заданной) базе. В этом смысле система проколотых окрестностей данной точки — частный случай такой базы множеств.

Поскольку на расширенной вещественной прямой можно построить базу окрестностей бесконечно удалённой точки, то оказывается допустимым описание предела функции при стремлении аргумента к бесконечности, а также описание ситуации, когда функция сама стремится к бесконечности (в заданной точке). Предел последовательности (как предел функции натурального аргумента), как раз предоставляет пример сходимости по базе «стремление аргумента к бесконечности».

Отсутствие предела функции (в данной точке) означает, что для любого заранее заданного значения области значений и всякой его окрестности сколь угодно близко от заданной точки существуют точки, значение функции в которых окажется за пределами заданной окрестности.

Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция оказывается непрерывной(в данной точке).

Предел фу́нкции — одно из основных понятий математического анализа.

12.Односторонние пределы.

Ответ - Односторонний предел — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левым и правым пределами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]