Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statistikaa.docx
Скачиваний:
79
Добавлен:
02.05.2015
Размер:
1.27 Mб
Скачать

34.Частотная амплитудно-частотная характеристика усилителей. Линейные искажения. Полоса пропускания.

Частотная характеристика усилителя показывает зависимость коэффициента К от частоты сигнала, поданного на вход усилителя. K = f(ʋ). Для того что бы ангармонический сигнал был усилен без искажения,необходима независимость коэффициента усиления от частоты. Частотная характеристика должна иметь вид К=соnst.

На практике это не реализуется и приводит к искажениям,получившим названия линейных или частотных. Полоса пропускания- диапазон частот в пределах которого амплитудно-частотная характеристика достаточно равномерна для того что бы обеспечить передачу сигнала без существенных искажений его форм.

35.основные компоненты Аппарат УВЧ состоит из двухтактного лампового генератора и терапевтического контура. Основные части генератора: колебательный контур, включенный в анодную цепь, в котором возбуждаются незатухающие электромагнитные колебания, частота которых определяется индуктивностью и емкостью контура; источник электрической энергии; электронные лампы и катушка обратной связи. Воздействие электрическим полем УВЧ на пациента производится посредством электродов пациента, которые включены в терапевтический контур, индуктивно связанный с анодным колебательным контуром генератора. Наибольшая мощность выделяется в терапевтическом контуре при условии резонанса, т.е. когда частота собственных колебаний терапевтического контура совпадает с частотой колебаний, возникающих в анодном колебательном контуре генератора. В России в аппарате УВЧ используется частота 40,58 МГц.

36Шкала электромагнитных излучений

Всякая шкала условно подразделяется на шесть диапазонов: радиоволны (длинные, средние и короткие), инфракрасные, видимые, ультрафиолетовые, рентгеновские и гамма-излучения. Эта классификация определяется либо механизмом образования волн, либо возможностью зрительного восприятия их человеком. Радиоволны обусловлены переменными токами в проводниках и электронными потоками (макроизлучатели).

Инфракрасное, видимое и ультрафиолетовое излучения исходят из атомов, молекул и быстрых заряженных частиц (микроизлучателей). Рентгеновское излучение возникает при внутриатомных процессах. Гамма-излучение имеет ядерное происхождение.

классификация частотных интервалов

наиболее коротковолновое ультрафиолетовое излучение перекрывается длинноволновым рентгеновским. В этом отношении очень характерна пограничная область инфракрасных волн и радиоволн.

Часто физиотерапевтическую электронную аппаратуру низкой и звуковой частоты называют низкочастотной. Электронную аппаратуру всех других частот называют обобщающим понятием – «высокочастотная аппаратура».

Оптика

37.Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Полное внутреннее отражение, отражение оптического излучения (света) или электромагнитного излучения другого диапазона (например, радиоволн) при его падении на границу раздела двух прозрачных сред из среды с большим преломления показателем (ПП). П. в. о. осуществляется, когда угол падения i превосходит некоторый предельный (называется также критическим) угол iпр. При i > inp преломление во вторую среду прекращается. j не может превышать 90°.iпр задаётся условием siniпр = 1/n, где n — относительный ПП 1-й и 2-й среды.

Предельный угол полного отражения - угол падения света на границу раздела двух сред, соответствующий углу преломления 90 град.

Волоконная оптика, раздел оптики,в котором рассматривается передача света и изображения по светопроводам и волноводам оптического диапазона, в частности по многожильным световодам и пучкам гибких волокон.

В волоконных деталях обычно применяют стеклянное волокно, световедущая жила которого (сердцевина) имеет высокий показатель преломления и окружена стеклом — оболочкой с более низким показателем преломления. Вследствие этого на поверхности раздела сердцевины и оболочки лучи претерпевают полное внутреннее отражение и распространяются только по световедущей жиле. Коэффициент пропускания световодов в видимой области спектра составляет 30—70% при длине 1 м. Для передачи изображения применяются жёсткие многожильные световоды и жгуты с регулярной укладкой волокон.

38.Рефрактометры, приборы для измерения преломления показателей (ПП) веществ (твёрдых, жидких и газообразных).

Основная часть - 2 прямоугольные призмы 1 и 2, сделанные из одного и того же сорта стекла. Между ними помещают каплю жидкости, показатель преломления которой требуется определить. Луч света от источника 3 направляют на боковую грань верхней призмы и приломившись падает на грань АВ. Эта поверхность матовая, поэтому свет рассеивается, и, пройдя через жидкость, падает на грань CD нижней призмы под углами от 0 до 90. Пространство внутри этого угла будет освещённым, а вокруг него - тёмным. Положение границы раздела света и тени определяется предельным углом преломления, зависящим от показателя преломления жидкости.

Если исследуемая жидкость имеет большой показатель преломления (мутная, окрашенная), то во избежание потерь энергии при прохождении света через исследуемую жидкость измерения проводят в отражённом свете. Луч света от источника проходит через матовую боковую грань СМ нижней призмы 2. При этом свет рассеивается и падает на грань CD, под углами от 0 до 90.

Общее строение рефрактометра:

В рефрактометре используется источник 3 белого света. Вследствие дисперсии при прохождении светом призм 1 и 2 граница света и тени оказывается окрашенной. Во избежание этого перед объективом зрительной трубы помещают компенсатор 4. Он состоит из двух одинаковых призм, обладающих различным показателем преломления. Призмы подбирают так, чтобы монохроматический луч с длиной волны 589,3 мкм не испытывал после прохождения компенсатора отклонения. Перемещая призмы компенсатора с помощью специальной рукоятки, добиваются того, чтобы граница света и темноты стала возможно более резкой.

Лучи света, пройдя компенсатор, падают в объектив 6 зрительной трубы. Изображение границы раздела свет - тень рассматриваются в окуляр 7 зрительной трубы. Одновременно в окуляр рассматривается шкала 8. Так как предельный угол преломления и предельный угол полного отражения зависят от показателя преломления жидкости, то на шкале рефрактометра сразу нанесены значения этого показателя преломления.

Оптическая система рефрактометра содержит также поворотную призму 5. Она позволяет расположить ось зрительной трубы перпендикулярно призмам 1 и 2, что делает наблюдение более удобным.

В общей фокальной плоскости объектива и окуляра зрительной трубы помещают стеклянную пластинку, на которую нанесена визирная линия (или крест, образованный тонкими нитями). Перемещением зрительной трубы добиваются совпадения визирной линии с границей свет - тень и по шкале определяют показатель преломления исследуемой жидкости. В некоторых современных рефрактометрах зрительная труба укрепляется неподвижно, а система измерительных призм может поворачиваться.

39.Микроскопия— изучение объектов с использованием микроскопа. Подразделяется на несколько видов: оптическая микроскопия, электронная микроскопия

Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз – объектива O1 и окуляра O2 . Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы. Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости; в этом случае лучи от любой точки предмета распространяются после окуляра параллельным пучком.

Мнимое изображение предмета, рассматриваемое через окуляр, всегда перевернуто. Если же это оказывается неудобным, можно перевернуть сам предмет перед объективом.

Предмет АВ помещается перед объективом немного дальше от его фокуса. Объектив создаёт действительное увеличенное изображение А*В* предмета вблизи переднего фокуса окуляра, которое рассматривается глазом.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]