Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statistikaa.docx
Скачиваний:
79
Добавлен:
02.05.2015
Размер:
1.27 Mб
Скачать

6. Непрерывные и дискретные случайные величины. Закон распределения Пуассона. Формулы для математического ожидания и дисперсии. Примеры.

Непрерывные величины принимают бесконечное число возможных значений в конечном, или в бесконечном интервалах изменения. Например, время, масса, объем.

Дискретные величины могут принимать конечное, счетное число случайных значений. Например, год рождения, число людей в автобусе, число страниц в книге.

Распределению Пуассона удовлетворяют вероятности появления заданного кол-ва редко происходящих случайных событий, наблюдаемый в серии из большого числа независимых опытов. Это распределение описывает дискретные, целочисленные неотрицательные случайные величины, появляющиеся с вероятностью р, много меньшей 1.

Pn(m)=/m!)* ,

Где m-число ожидаемых событий, Pn(m)-вероятность появления m искомых событий в серии из n независимых испытаний, μ-параметр распределения, совпадающий с математическим ожиданием, е-основание натурального логарифма.

Формулы для вычисления математического ожидания случайной величины.

Для дискретных величин M=∑Xi * Pi

Для непрерывных величин M=

Формулы для вычисления дисперсии случайной величины, среднеквадратического отклонения

Для дискретных величин D=∑(Xi-Xср)2 * Рi

Для непрерывных величин D=2 * f(x)dx

Среднеквадратическое отклонение δ=

7. Непрерывные и дискретные случайные величины. Плотность вероятности. Нормальный закон распределения. Математическое распределение и дисперсия. Графическое представление. Примеры.

Случайная величина (далее СВ) – величина, которая принимает значение в зависимости от стечения случайных обстоятельств. (Пр.: число больных на приеме врача, число студентов в аудитории, номер бочонка, когда его вынимают из мешка, при игре в лото и т.п.)

СВ называется дискретной (далее – ДСВ), если она принимает счетное множество значений. (Пр.: число букв на произвольной странице книге, число волос на голове человека, число молекул в выделенном объеме газа и т.п.)

СВ называется непрерывной (далее – НСВ), если она принимает любые значения внутри некоторого интервала. (Пр.: температура тела, масса зерен в колосьях пшеницы и т.п.)

Вероятность

- предел, к которому стремится частота события при неограниченном увеличении числа испытаний. (статистическое определение)

P(A)=limn→∞(m/n)

- отношение благоприятствующих случаев к общему числу равновозможных случаев к общему числу равновозможных несовместимых событий. (классическое опредедение) P(A)=(m/n)

Распределение вероятностей — закон, описывающий область значений СВ и вероятности их принятия.

  1. Распределение ДСВ. Дискретная величина (Х) считается заданной, если указаны ее возможные значения (xn) соответствующие им вероятности Р(хn)=pn. Совокупность Х и Р называется распределением ДСВ.

  2. Распределение НСВ.

dP=f(x)dx

dP – вероятность того, что НСВ Х принимает значения между х и х+dх. Вероятность dP прямо пропорциональна интервалу dx.

f(x) – плотность вероятности (функция распределения вероятностей). Показывает, как изменяется вероятность, отнесенная к интервалу dx случайной величины, в зависимости от самой этой величины.

f(x)=dP/dx

x

F(x)=∫f(x)dx - функция распределения НСВ. Равна вероятности того, что СВ

-∞

принимает значения, меньшие х.

F(x)=(-∞<X<x)

Нормальный закон распределения (закон Гаусса). СВ распределена по этому закону, если плотность вероятности имеет вид

a=M(X) – мат.ожидание СВ, σ – среднее квадратическое отклонение, σ2- дисперсия СВ.

Дисперсия СВ – МО отклонения случайной величины от ее МО.

D(X)=M[X-M(X)]

Удобная формула: D(X)=M(X2)-[M(X)]2

Кривая закона носит колокообразную форму, симметричную относительно прямой х=а (центр рассеивания). В точке х=а функция достигает максимума.

По мере возрастания |х-а| функция f(x) монотонно убывает, асимптотически приближаясь к нулю. С уменьшением σ кривая становится все более и более островершинной. Изменение а при постоянной σ не влияет на форму кривой, а лишь сдвигает ее вдоль оси абсцисс. Площадь, заключенной под кривой, согласно условию нормировки, равна единице. На рисунке изображены три кривые. Для кривых 1 и 2 а=0, но отличаются значением σ (σ12), кривая 3 имеет а≠0, σ=σ2.

Вычислим функцию распределения.

Обычно используют иное выражение. Введем новую переменную t=(x-a)/σ. Следовательно, dx=σdt. Подставляем это в формулу.

Значение функции Ф(t) обычно находят в составных таблицах, так как интеграл через элементарные функции не выражается. График:

Случайная величина при нормальном распределении может находится в интервале (х1, х2). Вероятность этого равна

Р(х1<x<х2)=Ф((х2-а)/σ)-Ф((х1-а)/σ)

Допустим, что произвольно из нормальных распределений выбираются группы по n значений СВ. Для каждой группы можно найти средние значения (х1, х2, хi). Они сами образуют нормальное распределение (только среднему значению будет соответствовать не вероятность, а относительная частота). МО будет соответствовать исходному, дисперсия и среднее квадратическое отклонение – отличаться в n и в √n соответственно.

Dn=D/n и σn=σ/√n.

На рисунке представлены графики нормальных распределений, полученных для групп со значением n, равными 1, 4, 16 и n→∞. При n=1 – исходное распределение, σn=σ. При n→∞ σn→0, фактически «группа СВ» - все исходное распределение, среднее значение выражается одним числом и соответствует МО, к которому сводится все распределение.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]