Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statistikaa.docx
Скачиваний:
79
Добавлен:
02.05.2015
Размер:
1.27 Mб
Скачать

27. Принцип действия электронного усилителя, принципиальная схема на транзисторе.

Электронным усилителем называют устройство, позволяющее повысить мощность входного электрического сигнала за счет энер­гии источника питания усилителя с помощью усилительных элемен­тов (транзисторов, операционных усилителей и т.п.) при заданном уровне искажений.

Электронные усилители являются одними из наиболее важных и широко используемых устройств в системах передачи и обработки различной информации, представленной с помощью электрических сигналов! Высокая чувствительность, быстродействие, компакт­ность, экономичность электронных усилителей обусловили их широ­кое применение в измерительной технике, электро- и радиосвязи, автоматике, вычислительной технике и т.п.

В зависимости от назначения усилители подразделяются так: а)усилители постоянного тока (ЖЕ); б)усилители низкой частоты (УНЧ); в)усилители высокой частоты (УВЧ); г) избирательные усилители; г)широкополосные (видеоусилители); д)импульсные; е)операционные и т.д.

Операционные усилители относятся к классу многофункцио­нальных, или универсальных, так как с их помощью можно реализо­вать практически любой вид усиления электрического сигнала.

В настоящее время основным элементом электронного усили­тельного устройства является транзистор.

Транзистором называют полупроводниковый прибор, в котором изменение входного электрического сигнала приводит к изменению сопротивления выходной цепи транзистора (транзистор - дословно "преобразователь сопротивления"). Это свойство транзистора мо­жет быть использовано для различных преобразований электри­ческих сигналов (усиление, генерирование, преобразователей фор­мы и т.д.) в электронных стабилизаторах, переключателях и т.п. Существует большое разнообразие транзисторов, отличающихся принципом действия, назначением, мощностью, частотными свойст­вами и другими признаками.

На рис. 1а показано условное графическое и буквенное обозначение таких транзисторов на электрических схемах. На рис. 1б изображена схема подключе­ния внешних элементов, генератора усиливаемого входного напря­жения UВХ и  источника питания +Un к выводам транзистора.

Так как эмиттер является общим, то такое включение транзистора получило название схемы включения с общим эмиттером (ОЭ). Это основная схема включения биполярных транзи­сторов, так как в ней наилучшим образом используются усилитель­ные свойства транзистора. Существуют также схемы включения с общей базой (ОБ) и общим коллектором (ОК), которые использу­ются реже.

28. Принцип действия генератора гармонических колебаний, принципиальная схема на транзисторе. Электронными генераторами гармонических колебаний называют автоколебательные системы, в которых энер­гия источников питания постоянного тока преобразуется в энергию незатухающих электрических сигналов переменного тока требуемой частоты. Электрические сигналы, формируемые генератором, должны быть стабильными по частоте и амплитуде, синусоидальными по форме. По принципу действия различают генераторы с самовозбуж­дением (автогенераторы) и с внешним (посторонним) возбуждением. Автогенераторы используют в качестве возбудителей колебаний требуемых частот, т. е. задающих генераторов. Получаемые от них колебания поступают в последующие каскады с целью усиления мощности или умножения частоты. Генераторы с внешним возбуж­дением являются по существу усилителями и служат для усиления мощности или умножения частоты высокочастотных колебаний.

^ Рис. 100. Схемы автогенераторов с индуктивной обратной связью: а — функциональная, б — транзисторная, в — ламповая Автогенератор представляет собой резонансный усилитель (нагрузкой служит резонансный контур) с положительной обратной связью, в котором выполнено условие самовозбуж­дения KР=1. Если это условие выполняется только для одной частоты, генерируемые колебания имеют синусоидальную форму, если для многих частот, — сложную форму. Обычно это ус­ловие реализуется в генераторах релаксационных (несинусоидаль­ных) колебаний — мультивибраторах, блокинг-генераторах и др. Принцип действия. Функциональная схема автогенератора (рис. 100, а) состоит из колебательной системы^ КС (обычно конту­ра), в которой возбуждаются требуемые незатухающие колебания; источника электрической энергии ИЭ (источника питания), благо­даря которому в контуре поддерживаются незатухающие колеба­ния; усилительного элемента УЭ (транзистора или лампы), с по­мощью которого регулируется подача энергии от источника в кон­тур; элемента обратной связи ЭОС, который осуществляет подачу возбуждающего переменного напряжения из выходной цепи во входную. По способу осуществления обратной связи различают автоге­нераторы с индуктивной (трансформаторной или автотрансформа­торной) и емкостной ОС. Применяют также схемы двухконтурных генераторов с электронной связью и обратной связью через меж­дуэлектродные емкости. ^ Рис. 101. Изменение токов и напряжений в транзисторной (а) и лам­повой (б) схемах генератора Схемы автогенераторов с индуктивной (трансформаторной) обратной связью показаны на рис. 100, б, в.При включении источ­ников питания в коллекторной (анодной) цепи транзистора (лам­пы) возникает ток коллектора, который заряжает конденсатор колебательного контура. После заряда конденсатор разряжается на катушку, В результате в контуре LK CK возникают свободные ко­лебания с частотой fо = 1/(2п\/ LKCK), индуктирующие в катушке связи Lc переменное напряжение той же частоты, с которой проис­ходят колебания в контуре. Это напряжение вызывает пульсацию тока коллектора (анода). Переменная составляющая тока воспол­няет потери энергии в контуре, создавая на нем усиленное тран« зистором переменное напряжение. Процесс возникновения колебаний в генераторе показан на рис. 101, а, б. В начальный момент (при включении источника пи­тания) свободные колебания в контуре имеют малую амплитуду, поэтому индуктированное этими колебаниями напряжение возбуж­дения на базе транзистора Uб или сетке лампыUc невелико. После усиления сигнала усилительным элементом ток в контуре iK(i*) воз­растает, в результате чего увеличивается амплитуда напряжения возбуждения U6(Ue), а следовательно, и амплитуда тока в контуре. В установившемся режиме рост тока в контуре ограничивается сопротивлением потерь контура а также затуханием, вносимым в контур за счет прохождения тока по обмотке ОС. Незатухающие колебания в контуре автогенератора установятся лишь при выпол­нении фазового (баланс фаз) и амплитудного (баланс амплитуд) условий самовозбуждения генератора

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]