
- •Предисловие к первому изданию
- •Единицы измерений систем си и сгс
- •Физические свойства меди и алюминия
- •Зависимость физических свойств электротехнической стали от содержания кремния
- •Глава первая принцип действия и устройство машин постоянного тока
- •Во внешней цепи (б)
- •Мотки якОрЯ.
- •Глава вторая магнитная цепь машины постоянного тока при холостом ходе
- •Уравнительные соединения
- •Глава четвертая основные электромагнитные соотношения
- •На технико-экономические показатели машины
- •98 Машины постоянного тока [Разд. I
- •I Круговой огонь представляет собой короткое замыкание якоря машины через электрическую дугу на поверхности коллектора.
- •Взаимная индукция, форма кривой и величина реактивной
- •2) Уменьшению реактивной э. Д. С. И 3) увеличению сопротивления цепи коммутируемой секции. Добавочные полюсы.
- •Глава седьмая потери и коэффициент полезного действия электрических машин
- •Глава восьмая нагревание и охлаждение электрических машин
- •Глава десятая двигатели постоянного тока
- •1. Наиболее удобным, распространенным и экономичным является способ регулирования скорости путем изменения потока ф6, т. Е. Тока возбуждения tB.
- •Регулирование скорости включением сопротивления в цепь якоря
- •Глава одиннадцатая специальные типы машин постоянного тока
- •Глава двенадцатая основные сведения о трансформаторах
- •Виды магнитопроводов.
- •I По конструкции магнитопровода трансформаторы подраз-| деляются на стержневые и броневые.
- •Глава тринадцатая намагничивание сердечников трансформаторов
- •Глава четырнадцатая схема замещения трансформатора и ее параметры
- •I Поэтому электромагнитная связь в трансформаторах весьма высока, а рассеяние мало.
- •1) Приведенное активное сопротивление вторичной обмотки
- •1 А. И. Воль дек. О схеме замещения трансформатора и ее параметрах. «Электричество», 1952, №. 8, с. 21-25.
- •Ib связи с изложенным можно сказать, что в режиме противо-включения существуют только магнитные поля рассеяния.
- •Глава пятнадцатая работа трансформатора под нагрузкой
- •Глава шестнадцатая несимметричная нагрузка трансформаторов
- •Глава семнадцатая переходные процессы в трансформаторах
- •Глава восемнадцатая разновидности трансформаторов
- •Глава девятнадцатая основные виды машин переменного тока и их устройство
- •Основные данные трехфазных гидрогенераторов завода «Электросила»
- •Глава двадцатая электродвижущие силы обмоток переменного тока
- •Глава двадцать первая обмотки переменного тока
- •X, y, z на 180°. При таком повороте этих векторов как при нечетном, так и при чешом d получим три одинаковых сектора векторов, и каждый сектор занимает угол 60° по
- •Глава двадцать вторая намагничивающие силы обмоток переменного тока
- •Н. С. Токов нулевой последовательности
- •Глава двадцать третья магнитные поля и индуктивные сопротивления обмоток переменного тока
- •I Индуктивные сопротивления, соответствующие этим гармоникам, назовем главными.
- •1 A. Ifc Вольдек. Рассеяние по коронкам зубцов в электрических машинах. — «Вестник электропромышленности», 1961, № 1, с. 60—62.
- •Глава двадцать четвертая основы теории асинхронных машин
- •Приведение обмотки ротора к обмотке статора.
- •Уравнения напряжений неприведенной асинхронной машины.
- •Глава двадцать пятая вращающие моменты и механические характеристики асинхронной машины
- •I Пусковой момент при данных значениях параметров машины также пропорционален квадрату приложенного напряжения.
- •I Очевидно, что вид механических характеристик существенно зависит от величины вторичного активного сопротивления.
- •Кратности начального пускового момента и пускового тока.
- •Глава двадцать шестая круговая диаграмма асинхронной машины
- •Глава двадцать восьмая пуск трехфазных асинхронных двигателей и регулирование их скорости вращения
- •Общие положения.
- •Регулирование скорости вращения посредством введения добавочной э. Д. С. Во вторичную цепь двигателя.
- •Глава двадцать девятая особые виды и режимы работы многофазных асинхронных машин
- •28 Mm, 975 об/мин при соединениях обмотки статора в трегулышк"
- •Глава тридцатая однофазные асинхронные машины
- •Глава тридцать первая асинхронные микромашины автоматических устройств
- •Глава тридцать вторая магнитные поля и основные параметры синхронных машин
- •Общие положения.
- •Глава тридцать третья работа многофазных синхронных генераторов при симметричной нагрузке
- •Номинальное изменение напряжения синхронного генератора
- •Глава тридцать четвертая элементы теории переходных процессов синхронных машин
- •Периодические и апериодические токи обмоток индуктора.
- •1Ри этих условиях.
- •Затухание апериодического тока якоря.
- •Глава тридцать пятая параллельная работа синхронных машин
- •Изменение активной мощности. Режимы генератора и двигателя.
- •Вывод формулы угловой характеристики активной мощности.
- •Синхронизирующая мощность и синхронизирующий момент.
- •Глава тридцать шестая асинхронные режимы и самовозбуждение синхронных машин
- •Глава тридцать седьмая синхронные двигатели и компенсаторы
- •Способы пуска синхронных двигателей.
- •Ib подавляющем большинстве случаев применяется асинхронный пуск синхронных двигателей (см. § 36-1 и 36-2).
- •Глава тридцать восьмая несимметричные режимы работы синхронных генераторов
- •Токи и сопротивления нулевой последовательности.
- •I Последние вызывают в машине ряд нежелательных явлений и делают режим работы машины тяжелым.
- •Потери энергии и нагрев ротора.
- •Вибрация.
- •Получим
- •Глава тридцать девятая колебания и динамическая устойчивость синхронных машин
- •Глава сороковая системы возбуждения синхронных машин
- •I Регуляторы, которые реагируют не только на величины отклонения определенных параметров, но и на величины их производных во времени, называются регуляторами сильного действия.
- •Глава сорок первая специальные типы синхронных машин
- •Глава сорок вторая многофазные коллекторные машины и каскады
- •I Однако в коммутируемых секциях к. М. П. Т , кроме реактивной э. Д с, возникает также трансформаторная э. Д. С. Етр, которая индуктируется основным магнитным потоком ф.
- •Список литературы
- •Предметный указатель
Глава тридцать третья работа многофазных синхронных генераторов при симметричной нагрузке
§ 33-1. Основные виды векторных диаграмм напряжений синхронных генераторов
Явнополюсная машина. Напряжение фазы обмотки генератора равно сумме индуктируемых в этой обмотке э. д. с. минус падение напряжения в активном сопротивлении фазы обмотки якоря га.
В соответствии с этим и изложенным в § 32-1 и 32-2 можно написать уравнение напряжения явнополюсного синхронного генератора:
Уравнение (33-3) можно прочитать также так: напряжение генератора V равно э. д. с. Е, индуктируемой током возбуждения, минус падения напряжения в индуктивных сопротивлениях реакций якоря xad и хад, ин* дуктивном сопротивлении рассеяния якоря хоа м в активной сопротивлении якоря га.
Уравнениям напряжения (33-1) и (33-3) соответствуют векторные диаграммы явнополюсного. синхронного генератора на рис. 33-1. В случае, показанном на рис. 33-1, а, генератор имеет смещанйую активно-индуктивную нагрузку, когда угол сдвига фаз между током и напряжением ц> > О, а на рис. 33-1, б нагрузка является активно-емкостной и «р < 0, На рис. 33-1, а, кроме того, ty > 0, Id > 0 и продольная реакция якоря является размагничивающей, а на рис. 33-1,6 г|5 < 0, /rf < 0 и продольная реакция
якоря является намагничивающей. Если U = const, то при активно-емкостной нагрузке (рис. 33-1, б) э. д. с. Е и ток возбуждения if
Рис. 33-1. Первый вид векторных диаграмм напряжений явнополюсного синхронного генератора"
меньше, чем при активно-индуктивной нагрузке (рис. 33-1, а), так как в первом случае продольная реакция якоря участвует в создании в машине результирующего потока необходимой величины. Поскольку хаа и га относительно малы, то при U = const величины э. д. с. Е& и потока Ф6 при изменении характера или величины нагрузки изменяются мало.
Угол е между векторами Ё и О называется углом нагрузки. В генераторном режиме работы (рис. 33-1) э. д. с. Ё всегда опережает U и угол 9 при этом считается положительным. Название этого угда происходит от того, что величина б зависит от нагрузки генератора
P = mUI cosq>. (33-4)
Действительно, из диаграммы рис. 33-1 видно, что, например, при U = const, / = const и при уменьшении абсолютной величины <р составляющая тока якоря lq увеличивается, соответственно чему увеличиваются также Eaq и 9.
Векторная диаграмма рис. 33-1 называется в литературе также диаграммой Блонделя.
Как было показано в § 32-2, э. д. с. Ёаа также можно разложить на составляющие:
При этом диаграммы рис. 33-1 можно несколько видоизменить, как показано на рис. 33-2. На диаграммах рис. 33-2, кроме того, направления векторов падений напряжения изменены на обратные. Поэтому диаграмма рис. 33-2 соответствует уравнению напряжения вида
которое получается из уравнения (33-5) путем переноса соответствующих членов из одной части уравнения в другую. Векторные диаграммы рис. 33-2 и уравнение (33-6) читаются так: э. д. с. Е, индуктируемая в обмотке якоря синхронного генератора током или магнитным полем возбуждения, равна напряжению на зажимах генератора плюс падения напряжения в сопротивлениях обмотки якоря. При исследовании режимов работы синхронной машины в энергетических системах обычно пользуются диаграммами вида рис. 33-2.
Необходимо указать на следующие примечательные свойства диаграмм рйс. 33-1 и 33-2. Если из точек А на рис. 33-1 и 33-2 провести перпендикулярно вектору / отрезки прямых до пересечения в точке Q с вектором Ё или его продолжением (штриховые линии на рис. 33-1 и 33-2), то длины этих отрезков на рис. 33-1 будут равны хад1, а на рис. 33-2 раны xql. Это следует из того, что в прямоугольных треугольниках AQB (рис. 33-1 и 33-2) угол при вершине А равен я];, и поэтому для рис. 33-1
Этим свойством можно воспользоваться для построения диаграмм в случае, когда заданы U, I и <р и необходимо найти Е. Тогда путем построения отрезков AQ сначала находят направление вектора Ё и, следовательно, угол "ф. После этого ток / можно разложить на составляющие Id, Iq и построить всю диаграмму.
На рис. 33-3 наряду с построением отрезка AQ = xql показаны также некоторые другие дополнительные построения и величины получаемых при этом отрезков, что дает более полное представление о соотношениях, характерных для векторной диаграммы явнопо-люсной синхронной машины.
Неявнополюсная машина. В этом случае хад = хал, xq = xd, поэтому нет необходимости разлагать ток / на составляющие Id
и lq и можно откладывать на диаграмме падения напряжения jxad/ и \xj. Вместо диаграмм рис. 33-1, а и 33-2, 'а тогда получим диаграммы рис. 33-4, а я б.
Для исследования некоторых вопросов явнополюсную машину иногда заменяют эквивалентной неявнополюсной машиной, у которой синхронное сопротивление по обеим осям равно xq рассматриваемой явнополюсной машины. Такая эквивалентная машина
Рис 33-3 Характерные соотношения в диаграмме напряжений явнополюсного синхронного генератора
Рис. 33*4, Векторные диаграммы напряжений неявнополюсного синхронного ген£ра-тора
имеет вместо э. д. с. Е эквивалентную э. д. с. возбуждения Ео (см. рис. 33-3), причем угол нагрузки в не изменяется. Необходимо иметь в виду, что при постоянном токе возбуждения if и постоянной э. д. с. Е величина э. Д. с. Eq при изменении нагрузки меняется. Векторные диаграммы рис. 33-1 —■ 33-4 справедливы для любого установившегося режима работы синхронного генератора, если в каждом случае пользоваться значениями параметров xad, xm или xd, xg, соответствующими реальному состоянию насыщения магнитной цепи в рассматриваемом режиме работы. Однако при различных режимах работы насыщение магнитной цепи различно и определение точных насыщенных значений указанных параметров связано с определенными трудностями, Подробнее этот вопрос изложен в § 33-3.
§ 33-2. Характеристики синхронных генераторов
Среди разнообразных характеристик синхронных генераторов отдельную группу составляют характеристики, которые определяют зависимость между напряжением на зажимах якоря U, током якоря / и током возбуждения if при / = /„ или п = па и ф = const в установившемся режиме работы. Эти характеристики дают наглядное представление о ряде основных свойств синхронных генераторов.
Они могут быть построены по расчетным данным, с помощью векторных диаграмм, или по данным соответствующих опытов.
Р I
Рис. 33-5. Схемы для опытного определения характеристик синхронных генераторов
Характеристики ^явнополюсных и неявнополюсных генераторов в основном одинаковы.
Схемы для снятия рассматриваемых ниже характеристик опытным путем изображены на рис. 33-5. На рис. 33j5, а обмотка якоря Я нагружается с помощью симметричных регулируемых нагрузочных сопротивлений Zm (например, трехфазный реостат и трехфазная индуктивная катушка» включаемые параллельно).
На рис. 33-5, б генератор нагружается на сеть Uc через индукционный регулятор напряжений {см. § 29-1), или регулируемый трехфазный трансформатор, или автотрансформатор РТ. Активная мощность генератора в обоих случаях регулируется путем изменения момента двигателя, вращающего генератор. В схеме рис. 33-5,6 воздействие на РТ изменяет напряжение генератора и его реактивную мощность или cos ф. На практике удобно пользоваться схемой рис. 33-5, бч
На рис. 33-5 предполагается, что обмотка возбуждения 05 питается от-постороннего источника. Регулирование тока if в обоих
случаях производится с помощью реостата R. Величина cos ф проверяется по показаниям двух ваттметров.
Все характеристики для наглядности целесообразно строить в относительных единицах.
Характеристика холостого хода (х. х. х.) определяет зависимость U = / (i^ при / = 0 и / = /н. Очевидно, что в режиме холостого хода U = Е. Если х. х. х. различных синхронных генераторов
изобразить в относительных единицах, полагая
Рис. 33-6. Нормальные характеристики холостого хода турбо- и гидрогенераторов СССР
где ifM — ток холостого хода при U = UB, то эти х. х\ х. будут мало отличаться друг от друга. Поэтому при расчетах различных режимов работы энергетических систем, в которых работает много генераторов, для упрощения расчетов принимается, что х. х. х. всех турбогенераторов, а также х. х. х. всех гидрогенераторов, выраженные в относительных единицах, одинаковы и соответствуют некоторым средним данным реальных
характеристик генераторов (рис. 33-6). Такие х. х. х. называются нормальными. Отметим, что относительный ток возбуждения I/* на рис. 33-6 и рассмотренный в § 32-4 относительный ток возбуждения различны, так как различны соответствующие базисные токи, принятые за единицу.
Как указывалось'в § 32-1, наряду с реальной криволинейной х. х. х. рассматриваются также спрямленные ненасыщенная и насыщенная х. х. х. (см. рис. 32-4). Нормальные ненасыщенные х. х. х. показаны на рис. 33-6 штриховыми линиями.
Магнитные цепи турбогенераторов более насыщены, и, согласно рис. 33-6, при Е = Ua для турбогенераторов k^d =.1,2 и для гидрогенераторов k^a = 1,06.
Характеристика короткого замыкания (х. к. з.) снимается при замыкании зажимов всех фаз обмотки якоря накоротко (симметричное короткое замыкание) и определяет зависимость 1 — f (if) при U = 0 и / = fu.
Если пренебречь весьма незначительным активным сопротивлением якоря (га = 0), то сопротивление цепи якоря в режиме корот-
кого замыкания будет чистоиндуктивным. Поэтому г]з = 90°, 1д = О, Jd = / и на основании выражения (33-5)
Уравнению (33-7) соответствует схема замещения рис. 33-7, а и векторная диаграмма рис. 33-7, б.
При коротком замыкании реакция якоря является чисто размагничивающей, э. д. с. Ец от результирующего потока воздушного зазора, равная
Е6 = Е — xadl=-xaal,
весьма мала, вследствие чего и поток Фа мал. Поэтому при коротком замыкании магнитная цепь не насыщена и х. к. з. I = f (if) прямолинейна (рис. 33-8).
Опытное определение xd. Опытные х. х. х. и х. к. з. ,(рис. 33-8) позволяют определить опытное значение продольного синхронного сопротивления xd. Обычно находят ненасыщенное значение этого сопротивления xdoa, которое в отличие от насыщенного значения xd для каждой машины' вполне определенное. Чтобы определить xdw, для какого-либо значения тока возбуждения, например if = ОА (рис. 33-8), по спрямленной ненасыщенной х. х. х. 3 находят Ет = АА" и по х. к. з. 2 — ток /, после чего в соответствии с равенством (33-7) вычисляют
Рис. 33-7. Схема замещения (а) и векторная диаграмма напряжений (б) синхронного генератора при симметричном установившемся коротком замыкании
Если £оо и / выражены в относительных единицах, то и xdca получается в этих же единицах.
Если вместо Ею в равенство (33-8) подставить значение Е = А А' дли той же величины if (рис. 33-8), то отношение
будет определять насыщенное значение xd при таком насыщении магнитной цепи, которое соответствует данному значению Е. Кривая 4 (рис. 33-8) представляет собой насыщенные значения xd =0
Отношение короткого замыкания (о. к. з.).
Отношением короткого замыкания &о.к. 3, согласно ГОСТ 183—66, называется отношение установившегося тока короткого замыкания /к0 при токе возбуждения, который при холостом ходе и п = пн дает Е = t/H, к номинальному току якоря /„:
то есть о. к. з. равно обратному значению хй*. У многих машин Ха* ~> 1, и тогда k0 к л < 1, т. е. ток короткого замыкания в указанных условиях меньше номинального. Отсюда можно сделать вывод, что установившийся ток короткого замыкания синхронных генераторов (вообще относительно не очень велик, что объясняется сильной размагничивающей реакцией якоря.
Если »/о и ift — соответственно токи возбуждения на холостом ходу, когда U = £/„, и при установившемся коротком замыкании,
Как будет показано ниже (см. § 35-4), величина о. к. з., как и величина xd, определяет предельную величину нагрузки, которую способен нести генератор при установившемся режиме работы, причем, чем больше о. к. з., тем больше предельная нагрузка.
Поэтому о. к. з. является важным параметром синхронных машин. У гидрогенераторов обычно /го.к-3. = 0,8 -г 1,8, а у турбогенераторов к0%ъ з = 0,4 ± 1,0.
В соответствии с изложенным в § 32-2 величина о. к. з. тем больше, чем больше величина зазора б между статором и ротором. Поэтому машины с большим о. к. з. дороже.'
Внешняя характеристика определяет зависимость U = f (/) при if = const, со§ ф = const, / — /н и показывает, как изменяется напряжение машины U при изменении величины нагрузки и неизменном токе возбуждения. На схеме рис. 33-5, б внешняя характеристика снимается следующим образом: при if = const посредством изменения момента или мощности приводного двигателя изменяют ступенями активную мощность генератора Р и при уаждом значении Р с помощью регулируемого трансформатора РТ изменяют U на зажимах генератора так, что достигается необходимое значение cos ф.
Вид внешних характеристик при разных характерах нагрузки показан на рйс. 33-10, причем предполагается, что в каждом случае величина тока возбуждения отрегулирована щк, что при / = /н также U = UH. Отметим, что величина if при номинальной нагрузке (U =* Ua, I — /н, cos ф = cos фн, / = /н) называется номинальным током возбуждения.
Вид внешних характеристик синхронного генератора объясняется характером действия реакции якоря. При отстающем токе (кривая / на рис. 33-10) существует значительная продольная размагничивающая реакция якоря (см. диаграммы рис. 33-1, а и 33-2, а), которая растет с увеличением тока нагрузки /, и поэтому U с увеличением / уменьшается. При чисто активной нагрузке (кривая 2 на рис. 33-10) ^акже имеется продольная размагничивающая реакция якоря, но угол ф между Е и / меньше, чем в предыдущем случае, поэтому продольная размагничивающая реакция якоря слабее и уменьшение U с увеличением / происходит медленнее. При опережающем токе (кривая of на рис. 33-10) возникает продольная
намагничивающая реакция якоря (см. рис. 33-1, б и 33-2, б), и поэтому с увеличением / напряжение U растет. Следует отметить, что значения if для трех характеристик 33-10 различны и наибольшее if соответствует характеристике 1.