Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
199704.doc
Скачиваний:
195
Добавлен:
01.05.2015
Размер:
21.78 Mб
Скачать

На технико-экономические показатели машины

Рассмотрим ряд подобных в геометрическом отношении машин. Все геометрические размеры (длина и диаметр якоря, полюсное деление, ширина и высота пазов и т. д.) любой машины этого ряда отличаются от размеров другой машины этого же ряда в одинаковое число раз. Предположим, что у всех машин данного ряда плотность тока и магнитные индукции в соответствующих частях машин, а также скорость вращения одинаковы. В таком случае можно рассматривать зависимость мощности, потерь и других величин от какого-либо характерного для машины геометрического размера /, например, / = Da или / = /е.

98 Машины постоянного тока [Разд. I

В геометрически подобных машинах общая площадь пазов изменяется прямо- пропорционально I2 и при jaconst общий объем тока в пазах также изменяется прямо пропорционально Р. Так как диаметр якоря изменяется прямо пропорционально I, то при этом Аа ~ I. Поэтому при указанных условиях, согласно выражению (4-15),

Р ~ /4.                                       (4-20)

К этому выводу можно прийти и иначе. Действительно, при N = const сечение проводника, а следовательно, и ток якоря 1а изменяются пропорционально /2. Площадь поверхности якоря на один полюс, а значит, поток Фв и э. д. с. Еа также изменяются пропорционально /2, Следовательно, мощность

С другой стороны, объем машины V, ее вес G и стоимость С прямо пропорциональны Is:

V~G~C~t3,                        (4-21)

и, следовательно,

G с 1                                    ,. ооч

-рг ~ т ■                                 (4-22)

Это значит, что вес машины и ее стоимость на единицу мощности уменьшаются с увеличением геометрических размеров обратно пропорционально I.

При В = const, / = const и / = const электрические и магнитные потери мощности в отдельных частях машины на единицу объема также постоянны. Следовательно, эти потери растут прямо пропорционально I3. То же приблизительно верно и для механических потерь. Поэтому суммарные потери

Таким образом, потери на единицу мощности при увеличении / и Р уменьшаются, а к. п. д. машины увеличивается.

Величина поверхностей охлаждения S0O, с которых отводятся выделяющиеся в виде тепла потери Р2> растет прямо пропорционально Р, и поэтому

Следовательно, величина потерь на единицу поверхностей охлаждения растет прямо пропорционально /, и поэтому условия охлаждения в крупных машинах ухудшаются.

Это вызывает необходимость совершенствования способов охлаждения электрических машин при увеличении их размеров и мощности,

Полученные зависимости не вполне точны, так как произведение ВьАа в действительности увеличивается медленее, чем I (см. §4-2). Однако эти зависимости вполне четко выявляют общие закономерности и тенденции и притом в одинаковой степени как для машин постоянного, так и для машин переменного тока.

Из полученных зависимостей следует, что относительный расход материалов и относительная стоимость у крупных машин всегда меньше, а к. п. д. выше, чем у малых машин. Аналогичным образом нетрудно установить, что при сохранении неизменными геометрических размеров и электромагнитных нагрузок вес, стоимость и потери на единицу мощности с увеличением скорости вращения уменьшаются.

Поэтому экономически целесообразно строить и применять, где это возможно, крупные и быстроходные электрические машины.

Содержание Предыдущий § Следующий

Глава пятая

МАГНИТНОЕ ПОЛЕ МАШИНЫ ПРИ НАГРУЗКЕ

§ 5-1. Реакция якоря и ее виды

Явление реакции якоря. Во второй главе было рассмотрено магнитное поле машины постоянного тока при холостом ходе (/„ = = 0), создаваемое обмоткой возбуждения. Картина магнитного поля для этого случая при 2р = 2 изображена на рис. 5-1, а. При нагрузке машины (1а =£ 0) обмотка якоря создает собственное магнитное поле, картина которого при установке щеток на геометрической нейтрали и при отсутствии возбуждения (tB = 0) изображена на рис. 5-1, б. Как видно из рис. 5-1, б, ось поля якоря направлена по оси щеток 11. Развиваемый в машине электромагнитный момент можно рассматривать как результат взаимодействия полюсов поля якоря Na Sa (рис. 5-1,6) и полюсов поля возбуждения N — S (рис. 5-1, а),

Поля якоря и индуктора, действующие совместно, образуют результирующее поле, характер которого на основании рис. 5-1, а и б показан на рис. 5-2. Полярность полюсов и направления токов якоря на этом рисунке соответствуют случаю, когда в режиме генератора (Г) якорь вращается по часовой стрелке, а в режиме двигателя (Д) — против часовой стрелки.

Рис. 5-1. Магнитное поле индуктора (а) и якоря (б)

Из рис. 5-2 видно, что под влиянием поля якоря результирующее поле машины изменяется. Это явление называется реакцией якоря.

Поперечная реакция якоря. При установке щеток на геометрической нейтрали /—1 (рис. 5-1, б) поле якоря направлено поперек оси полюсов, и в этом случае оно называется полем поперечной ре.акции якоря.

Как следует из рис. 5-2, поперечная реакция якоря вызывает ослабление поля под одним краем полюса и его усиление под другим, вследствие чего ось результирующего поля поворачивается в генераторе по направлению вращения якоря, а в двигателе — в обратную сторону. Если условно, как это иногда делается, рассматривать линии магнитной индукции в качестве упругих нитей, то возникновение электромагнитного момента можно рассматривать как результат действия упругих сил этих нитей, стремящихся сократиться и повернуть якорь. Из рис. 5-2 видно, что при такой трактовке явлений направления действия моментов совпадают с реальными как в режиме генератора, так и в режиме двигателя.

Под воздействием поперечной реакции якоря нейтральная линия на поверхности якоря, на которой 5 = 0, поворачивается из

положения геометрической нейтрали /—/ на некоторый угол р в положение 22 (рис. 5-2), которое называется линией физической нейтрали. В генераторе физическая нейтраль повернута в сторону вращения якоря, а в двигателе — в обратную сторону.

Из рис. 5-1, б следует, что при вращении якоря в проводниках, показанных в левой части рис. 5-1, б, поле поперечной реакции

Рис. 5-2. Результирующее магнитное поле при установке щеток на геометрической нейтрали

Рис. 5-3. Поле продольной реакции якоря

якоря индуктирует э. д. с. одного направления, а в правой — другого, В результате этого при установке щеток на геометрической нейтрали суммарная э. д. с. от поля реакции якоря в каждой параллельной ветви обмотки и на щетках равна нулю.

Продольная реакция якоря. Если щетки сдвинуты с геометрической нейтрали на 90° эл. (рис. 5-3), то поле якоря действует вдоль оси полюсов и называется полем продольной реакции якоря. Это поле в зависимости от направления тока в якоре оказывает на поле полюсов намагничивающее или размагничивающее действие, и в результате его взаимодействия с полем полюсов электромагнитный момент не возникает. Индуктируемая при вращении якоря э. д. с. на щетках будет в этом случае также равна нулю.

Общий случай реакции якоря. Обычно щетки устанавливаются на геометрической нейтрали. Однако в результате неточной установки щеток, а также сознательных действий персонала щетки могут быть сдвинуты с геометрической нейтрали на некоторый угол а (рис. 5-4, а), причем 0 < а < 90° эл. В таком общем случае поверхность якоря на протяжении двойного полюсного деления можно

разбить на две пары симметричных секторов: 1) аб и гв, 2) аг и бе. Токи первой пары секторов (рис. 5-4, б) создают поле поперечной реакции якоря, а токи второй пары (рис. 5-4, в) — поле продольной реакции якоря.

Указанные на рис. 5-4, а полярности полюсов и направления токов якоря соответствуют вращению якоря в режиме генератора (Г) по часовой стрелке, а в режиме двигателя (Д) — против часовой стрелки.

Рис. 5-4. Разложение н. с. реакции якоря при сдвиге щеток с нейтрали (а) на поперечную (б) и продольную (в)

Как следует из рис. 5-4, при повороте щеток генератора в направлении вращения и щеток двигателя против направления вращения возникает размагничивающая продольная реакция якоря, вызывающая уменьшение потока полюсов. При сдвиге щеток в обратном направлении возникает намагничивающая продольная реакция якоря, вызывающая увеличение потока полюсов.

§ 5-2. Влияние реакции якоря на магнитный поток машины

Н. с. поперечной реакции якоря. Рассмотрим вопросы количественного учета влияния реакции якоря на магнитный поток машины. При этом для простоты примем следующие допущения: 1) якорь не имеет пазов, однако влияние пазов на магнитное сопротивление зазора учитывается введением в рассмотрение эквивалентного воздушного зазора б' = &66 (см. § 2-2); 2) проводники якоря распределены равномерно по окружности якоря. Получаемые при этом результаты достаточно точны для практических целей.

На рис. 5-5, а изображена машина в развернутом виде на протяжении двойного полюсного деления, причем щетки установлены на геометрической нейтрали. Характер возникающего поля поперечной реакции якоря также показан на рисунке, Величины, относя-

а возле края полюсного наконечника

Размагничивающее действие поперечной реакции якоря. При

%х = const .кривая индукции Baqx повторяла бы кривую Faqx- Однако в тйеждуполюсном пространстве Хх уменьшается, и Baqx = = / (*) принимает форму кривой / на рис. 5-5, в. На этом же рисунке кривая 2 представляет собой распределение индукции поля возбуждения в зазоре. Кривая индукции результирующего поля 3 получается при отсутствии насыщения путем сложения ординат кривых / и 2. В действительности вследствие насыщения магнитной цепи результирующая индукция на тех участках, где поля складываются, будет меньше арифметической суммы ординат кривых 1 и 2, а на участках, где поля вычитаются, — больше арифметической рав-ности ординат кривых 1 ш 2. Поэтому с учетом насыщения кривая индукции результирующего поля примет вид штриховой кривой 4. При отсутствии насыщения поперечная реакция якоря вызывает лишь искажение кривой поля в зазоре, однако поток одного полюса остается неизменным. Но при наличии насыщения уменьшение потока на том краю полюса, где поля складываются, будет больше, чем увеличение на том,краю полюса, где поля вычитаются. Это объясняется тем, что насыщение сильнее там, где сильнее результирующее поле.

Вследствие этого под влиянием насыщения поперечная реакция якоря всегда вызывает некоторое уменьшение потока полюсов, и в этом смысле говорят, что поперечная реакция якоря действует размагничивающим образом.

Следует отметить, что в некоторых случаях в машинах мощностью до 39—40 кет при номинальной нагрузке, а также в других машинах в таких режимах работы, когда поток возбуждения ослаблен, под воздействием реакции якоря возможно изменение направления («опрокидывание») поля под одним краем полюса. При Ри > 50 кет величину б обычно выбирают такой, чтобы при номинальной нагрузке не происходило «опрокидывания» поля. С этой же целью в мощных машинах зазор под краями полюсных наконечников делают больше, чем под центром полюса. Это приводит также к улучшению условий коммутации сложных обмоток, так как распределение индукции поля возбуждения приближается к синусоидальному и з. д. с. от высших гармоник поля, которые могут вызвать большие разности напряжений между соседними коллекторными пластинами многоходовых петлевых обмоток, уменьшается.

Количественный учет влияния поперечной реакции якоря. Насыщение полюсных наконечников и тела якоря невелико, и поэтому

при количественном учете влияния поперечной реакции якоря достаточно учесть лишь насыщение зубцов. Для такого учета по данным расчета магнитной цепи при холостом ходе (см. гл. 2) строят так называемую переходную магнитную характеристику машины (рис. 5-6), представляющую собой зависимость индукции в воздушном зазоре В§ при холостом ходе от суммы н. с. зазора и зубцов:

1 02 1 о I 1 г-

Пусть при холостом ходе Вь определяется ординатой аб на рис. 5-6. Тогда н. с. воздушного зазора и зубцового слоя Fiz создаваемая обмоткой возбуждения, будет равна абсциссе Оа. Согласно изложенному выше (см. рис. 5-5), при нагрузке по центральной осевой линии полюсного наконечника (координата х = 0 на рис. 5-5). действует такая же н. с, однако в других точках воздушного зазора будет действовать н. с.

Если отложить на рис. 5-6 от точки а вправо и влево н. с. Faqb, вычисленную по формуле (5-5), то действующая в разных точках на протяжении полюсного наконечника н. с. FBa

Рис. 5-6. Определение размагничивающего действия поперечной реакции якоря

будет равна абсциссам точек отрезка ваг, а индукция результирующего поля в зазоре

в этих точках на протяжении полюсного наконечника определится ординатами участка кривой дбе.

Отрезок вг на рис. 5-6 пропорционален ширине полюсного наконечника, и поэтому площадь фигуры вдбегав пропорциональна потоку полюса при нагрузке. В то же время площадь прямоугольника вжэг пропорциональна потоку полюса при холостом ходе. Поэтому площадь криволинейного треугольника без характеризует увеличение потока под одной половиной полюса, а площадь треугольника джб — его уменьшение под другой половиной полюса. Таким образом, разность площадей этих треугольников определяет уменьшение потока полюса под влиянием поперечной реакции якоря.

Заменим на рис. 5-6 фигуру вдбегав равновеликим ей по площади прямоугольником вилг. Тогда ордината ак представляет собой среднюю индукцию Ббн в воздушном зазоре при нагрузке, а отрезок

бк — АВ6 — уменьшение средней индукции при нагрузке. По данным расчета магнитной цепи при холостом ходе можно отложить по оси ординат вместо В& пропорциональную ей величину потока Фа в воздушном зазоре. Тогда отрезок бк = ДФ^ непосредственно определяет уменьшение потока полюса под воздействием поперечной реакции якоря.

Отрезок ма = А/^г, на рис. 5-6 представляет собой величину н. с. возбуждения, эквивалентную размагничивающему действию поперечной реакции якоря. Соответствующим увеличением н. с. возбуждения размагничивающее действие реакции якоря может быть скомпенсировано.

Если перемещать точку а на рис. 5-6 при Faqb = const вдоль оси абсцисс, т. е. рассматривать влияние поперечной реакции при разных условиях насыщения, то величина АФе будет изменяться так, как показано в нижней части рис. 5-6. Величина АФ8 максимальна для точки, соответствующей колену переходной характеристики, и уменьшается от этой точки в обе стороны. Таким образом, влияние поперечной реакции якоря при Ia = const зависит от положения рабочей точки на магнитной характеристике машины.

При неизменной н. с. возбуждения зависимость A.Fqb и ДФ6 от 1а является сложной функцией. Однако при изменении 1а в небольших пределах в области номинальной нагрузки можно без особой погрешности принять, что &Fgb та 1а.

Подсчет площадей криволинейных треугольников вида джб и без на рис. 5-6 трудоемок. Поэтому различными авторами предложены более удобные методы определения ДФв и AFgb.

Метод В. Т. Касьянова предусматривает проведение (рис. 5-7, а) прямых д'б и бе' таким образом, чтобы были соответственно равны площади треугольников джб и д'жб и площади треугольников без и бе'з. Достаточно точное проведение таких прямых возможно по глазомерной оценке. Затем прямая бе' продолжается до пересечения с линией еж в точке и. Тогда ДФ§ определяется площадью треугольника д'иб и

С другой стороны, если увеличить н. с. возбуждения на AFgi, (рис. 5-7, б), чтобы скомпенсировать таким образом влияние реакции якоря, это будет соответствовать увеличению потока на сумму площадей криволинейных прямоугольников джж'д' и зее'з', которая приближенно равна

Более точные результаты можно получить, если вычислить сначала AFgb по формуле (5-7), отложить это значение &Fqt, на рис. 5-7, б от точек виг вправо и вы-

Рис. 5-8. Н. с. реакции якоря при сдвиге щеток с нейтрали

Для компенсации продольной реакции якоря в этом случае достаточно увеличить или уменьшить Fv на величину Fad в зависимости от того, является ли действие Fad размагничивающим или намагничивающим. При таком методе не учитывается погрешность, связанная с тем, что поток рассеяния полюсов создается не н. с. Fd, а н. с. FB. Однако эта погрешность невелика.

Учет размагничивающего действия поперечной реакции якоря в рассматриваемом случае производится так же, как при с — 0. Диаграмму н. с. якоря для этого случая показана на рис. 5-8, где кривые 1, 2 и 3 представляют собой соответственно полную, поперечную и продольную н. с. реакции якоря.

Если т — 2с > Ь8ъ то учет влияния реакции якоря несколько усложняется. Этот случай в нормальных машинах на практике не встречается и поэтому здесь подробнее не рассматривается.

§ 5-3. Напряжения между коллекторными пластинами и компенсационная обмотка

Напряжения между коллекторными пластинами. Реакция якоря в определенных условиях может вызвать нежелательные по своим последствиям явления.

К числу таких явлений относится прежде всего увеличение напряжения между коллекторными пластинами вследствие искажения поля под воздействием поперечной реакции якоря.

При холостом ходе максимальное напряжение между соседними пластинами в случае, например, применения простой петлевой обмотки

мк = 2B&wJ6va,

где wc — число витков секции.

При нагрузке максимальная индукция под одним из краев полюса (см. рис. 5-5, в) достигает некоторого значения 5макс и

Предельное значение «к.макс ограничивается возможностью возникновения электрической дуги между смежными пластинами. Поэтому обычно требуется, чтобы «к.макс sc. 30 ч- 50 в.

Недопустимое повышение ик макс может произойти либо вследствие увеличения Бе макс под воздействием реакции якоря (например, значительная перегрузка машины), либо вследствие уменьшения В^ (двигатели с регулированием скорости в широких пределах, см. гл. 10).

Искажение кривой поля тем значительнее, чем меньше воздушный зазор. Величину зазора в машинах средней и большой мощности выбирают обычно такой, чтобы при номинальном режиме индукция под краем полюса (х = Ь&/2) не меняла своего направления («опрокидывание» поля). Согласно выражению (5-6), для этого необходимо, чтобы

F&z 3s у Aabs.

При Da = 10 -J- 50 см обычно б « 0,009 Da. Компенсационная обмотка.

Эффективным средством борьбы с искажением кривой поля и увеличением напряжения между коллекторными пластинами является применение компенсационной обмотки.

Она размещается в пазах, выштампованных в полюсных наконечниках (рис. 5-9, а), так, чтобы направления токов в этой обмотке и обмотке якоря в пределах каждого полюсного деления были противоположны. Если линейные нагрузки обеих обмоток равны

а = Ак 0), то влияние поперечной реакции якоря в пределах полюсного наконечника устраняется полностью (рис. 5-9, б). Последовательное соединение этих обмоток обеспечивает такую компенсацию при всех нагрузках. Однако соблюдение условия Аа = Ак 0 в точности не всегда возможно. В таких случаях в пределах полюсного наконечника сохраняется некоторое влияние поперечной реакции якоря и максимальное значение н. с. реакции якоря в нейтральной зоне

также увеличивается (рис. 5-9, в).

При наличии компенсационной обмотки величину воздушного зазора можно брать минимально допустимой по механическим условиям. Компенсационная обмотка обычно применяется в мощных и быстроходных машинах, когда UH > 400 -5- 450 в, PJ2p > 80 -f-100 кет, машина подвергается перегрузкам более 20% и коммутация затруднена (реактивная э. д. с. ег > 5 -*- 7 в — см. § 6-4 и 6-5).

Рис. 5-9. Расположение компенсационной обмотки (о) и диаграммы н. с. якоря (Fa), компенсационной обмотки (FK. 0) и результирующей н. с. (Fa -4- FK, 0) при равенстве (б) и неравенстве (в) линейных нагрузок якоря и компенсационной обмотки

Содержание Предыдущий § Следующий

Глава шестая КОММУТАЦИЯ

§ 6-1. Природа щеточного контакта

Природа проводимости в щеточном контакте.

Как уже указывалось (см. § 3-3), коммутацией называется процесс переключения секций обмотки из одной параллельной ветви в другую и изменения направления тока в них на обратное.

Во время коммутации секции замыкаются накоротко щетками, через которые ток из якоря передается во внешнюю цепь или из внешней цепи в якорь. Явления в щеточном контакте, т. е. между щетками и коллекторными пластинами, оказывают большое влияние на коммутацию и на исправную работу машины.

Передача тока от щетки к коллектору и обратно может осуществляться через: 1) непосредственный механический контакт между щеткой и коллектором, 2) мельчайшие частицы медной и графитной пыли и 3) ионизированные воздушные щели между щеткой и коллектором. Соответственно говорят о зонах: 1) непосредственного контакта, 2) пылевидного контакта и 3) ионной проводимости.

Ввиду неровности микрорельефа непосредственный механический контакт, или соприкосновение щетки с коллекторными пластинами, происходит только на части контактной поверхности щетки, и притом только в отдельных точках. Плотность тока в этих точках достигает нескольких тысяч ампер на квадратный миллиметр. Точечные контакты непостоянны ввиду их износа и разрушения, а также перемещения коллектора, причем время существования каждого точечного контакта в отдельности весьма невелико.

Вследствие износа щеток и коллектора в контактном слое всегда имеется множество мелких пылинок. Поэтому контакт и передача тока частично осуществляются через эти пылинки. Плотность тока при этом также велика, а продолжительность каждого контакта из-за движения коллектора и сгорания пылинок невелика.

Точки непосредственного и пылевидного контакта вследствие больших плотностей тока накаляются до красного и белого каления. При красном калении медь и щетки, поляризованные анодно, испускают ионы. При белом калении происходит термическая эмиссия электронов из катодно поляризованных щеток и пластин. Эмитирующие электроны в свою очередь ионизируют воздух в контактном слое. В результате этого создается ионная проводимость тока. В зоне ионной проводимости под щеткой возникают также слабые электрические искровые и дуговые разряды. Такие разряды появляются и на краях щеток при замыкании секций накоротко и их размыкании.

Рассмотренные разнородные зоны проводимости невелики по размерам, перемежаются друг с другом и перемещаются по контактной поверхности щетки. Ионная проводимость преобладает при больших плотностях тока под щеткой (/щ > 5 а/см2.)

Искровые и дуговые разряды оказывают интенсивное термическое действие на материалы щетки и коллектора. Катод термически разрушается, и электродное вещество переносится с катода на анод. В результате этого происходит электрическая эрозия, следствием которой является перенос материала и износ электродов. Высокие температуры возникают лишь в отдельных точках, и поэтому щетки

и коллекторные пластины в целом не нагреваются до высокой температуры.

Электролиз. В воздухе всегда есть влага, и все предметы покрыты тончайшей пленкой влаги, которая имеет определенную степень кислотности, так как в воздухе всегда содержатся различные окислы. Поэтому при прохождении тока через слой щеточного контакта возникает явление электролиза. В результате электролиза на коллекторе образуется блестящая пленка окислов меди, имеющая различную окраску (розовую, коричневую, фиолетовую, сине-стальную) и называемая политурой. Политура увеличивает переходное сопротивление щеточного контакта, ограничивает тем самым величину тока короткого замыкания секции и улучшает коммутацию.

Наличие хорошей политуры на коллекторе является признаком хорошей коммутации. Зеркало щетки при хорошей коммутации имеет также блестящую поверхность.

Сильное искрение и дуговые разряды разрушают политуру и зеркальную поверхность щеток, контактные поверхности становятся матовыми и появляются следы нагара. Переходное сопротивление щеточного

контакта при этом уменьшается, и условия коммутации ухудшаются.

В верхних слоях атмосферы влаги весьма мало, и условия коммутации машин постоянного тока на высотных самолетах сильно ухудшаются. Для создания политуры в этом случае применяются специальные сорта щеток.

Вольт-амперные характеристики щеток. Вследствие сложной природы щеточного контакта его переходное сопротивление не является постоянным, а зависит от величины тока. На рис. 6-1 сплошными линиями показаны две вольт-амперные характеристики щеток, представляющие собой зависимость падения напряжения в контактном слое щетки Д£/щ от. средней плотности тока под щеткой /,,. Там же штриховыми линиями изображены кривые удельного переходного сопротивления

Рис. 6-1. Вольт-амперьые характеристики щеток

Рщ       ^ U щ/ J щ

в функции /щ.

На начальном, круто поднимающемся, участке кривых AUm = = / (/щ) преобладает контактная проводимость, а на пологом участке — ионная проводимость.

Кривые / на рис. 6-1 соответствуют случаю, когда при малых /щ сопротивление рщ велико и начальная часть вольт-амперной характеристики круто поднимается. Такие щетки обеспечивают лучшие условия коммутации, чем щетки, соответствующие кривым 2 на рис 6-1 (см. § 6-3 и 6-6).

§ 6-2. Искрение на коллекторе

Причины искрения.

С практической точки зрения важно, чтобы коммутация происходила без значительного искрения у контактных поверхностей щеток, так как сильное искрение портит поверхность коллектора и щеток и делает длительную работу машины невозможной.

Причины искрения 'на щетках можно подразделить на механические и электромагнитные.

Механические причины искрения большей частью связаны с нарушением контакта между щетками и коллектором. Такие нарушения вызываются: 1) неровностью поверхности коллектора, 2) плохой пришлифовкой щеток к коллектору, 3) боем коллектора, если он превышает 0,2—0,3 мм, 4) выступанием отдельных коллекторных пластин, 5) выступанием слюды между коллекторными пластинами, 6) заеданием щеток в щеткодержателях (тугая посадка), 7) вибрацией щеток (нежесткость токосъемного аппарата, плохая балансировка машины, слишком свободное расположение щеток в щеткодержателях с зазорами более 0,2—0,3 мм, слишком большое расстояние между обоймой щеткодержателя и коллектором — более 2— 3 мм и т. д.). Искрение может быть вызвано также неравномерным натягом щеточных пружин, несимметричной разбивкой щеточных пальцев и щеток по окружности и другими причинами механического характера.

Электромагнитные причины искрения на щетках связаны с характером протекания электромагнитных процессов в коммутируемых секциях. Обеспечение достаточно благоприятного протекания этих процессов является важной задачей при создании машин постоянного тока, в особенности крупных. Изучение этих вопросов составляет основное содержание последующих параграфов настоящей главы.

Степень искрения. Качество коммутации, согласно ГОСТ 183—66 (табл. 6-1), оценивается степенью искрения (классом коммутации) под сбегающим краем щетки, т. е. под тем краем, из-под которого пластины коллектора выходят при своем вращении. Степени искрения 1, 1 - и 1 g допускаются при любых режимах работы.

Таблица 6-1 Степень искрения (класс коммутации) электрических машин

Степень искрения (класс коммутации)

Характеристика степени искрения

Состояние коллектора и щеток

1

1 4

Отсутствие искрения (темная коммутация) Слабое точечное искрение под небольшой частью щетки

Отсутствие почернения на коллекторе и нагара на щетках

'1

Слабое искрение под большей частью щетки

Появление следов почернения на коллекторе, легко устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках

2

Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузки

Появление следов почернения на коллекторе, не устраняемых протиранием коллектора бензином, а также следов нагара на щетках

3

Значительное искрение под всем краем щетки с наличием крупных и вылетающих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работы

Значительное почернение на коллекторе, не устраняемое протиранием поверхности коллектора бензином, а также подгар и разрушение щеток

Потенциальное искрение. В определенных условиях возникают искровые разряды между отдельными коллекторными пластинами на свободной поверхности коллектора, не занятой щетками. Такое искрение называется потенциальным. Оно вызывается либо накоплением угольной пыли и грязи в канавках между соседними коллекторными пластинами, либо возникновением чрезмерных напряжений между соседними пластинами (см. § 5-3). Такое искрение опасно тем, что оно способно развиться в короткое замыкание между пластинами и в так называемый круговой огонь.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]