Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2_kurs_3_semestr / МетодичкаАлгебра.doc
Скачиваний:
168
Добавлен:
19.04.2015
Размер:
1.58 Mб
Скачать

Можества

«Ты когда-нибудь видела, как рисуют множество? » - «Множество чего?» - спросила Алиса. - «Ничего, - отвечала Соня, - просто множество!».

Л. Кэррол. «Алиса в стране чудес»

Множество - одно из самых основных понятий современной математики, оно исполь­зуется, как базовое, почти во всех ее областях, а без символики теории множеств сейчас не­мыслимо, пожалуй, ни одно математическое исследование. Однако, теория множеств полу­чила официальное признание не так давно: это произошло на Первом международном кон­грессе математиков в Цюрихе в 1879 году, на котором Ж. Адамар и А. Гурвиц сообщили о многочисленных содержательных примерах ее применения в математическом анализе.

Появление теории множеств было вызвано, видимо, общей логикой развития науки, историческими процессами формализации языка математики (т. е. необходимостью выделе­ния логических правил и допустимых приемов рассуждений), осознанием универсальности результатов и преимуществ метода, при котором содержанием математического исследова­ния становятся свойства какого-либо математического понятия, структуры, которые опреде­ляются априори своими основными характеристическими свойствами или аксиомами. Позд­нее, при полной кристаллизации идеи, такой метод будет назван аксиоматическим и его осознание позволит сделать громадный шаг в науке к новым, немыслимым до того областям. Но это произойдет только в XIX - XX веках.

Еще в IV в. до нашей эры в работах Аристотеля (, 384 - 322 до н. э.) под­вергались исследованию особые отношения и логические рассуждения, которые он называл силлогизмами и которые на современном теоретико-множественном языке могут быть про­иллюстрированы предложениями: А  В, А  В  , или более сложными: (А  B)(B  С)  А  С. (Здесь через А, В, С обозначены множества). У Аристотеля это формулирова­лось примерно так: «Всякое А есть В». «Некоторое А есть В», и аналогичными предложе­ниями, в которых, и это очень важно, было несущественно, какие именно предметы состав­ляют А или В. Однако, еще им самим было замечено, что подобный язык и схемы оказыва­лись недостаточными для описания всех рассуждений и доказательств результатов, извест­ных в математике к тому времени.

Идеи Аристотеля оказались плодотворными для немецкого математика Г. Лейбница (Leibniz Gotfried Wilhelm, 1646 - 1716), который был не только великолепным и многосто­ронним исследователем (область его интересов составляли вопросы логики, геометрии, ма­тематического анализа, физики, механики, даже палеонтологии и ботаники, он изобрел «счетную машину», что дает право называть его одним из провозвестников современной компьютерной математики), но и глубоким философом. Видимо, поэтому Лейбниц длитель­ное время был увлечен идеей создания метода, который сводил бы все понятия в математике к примитивным и основным, составляющим как бы «азбуку человеческой мысли» и посред­ством «азбуки правил» затем формальным путем давал бы все истинные математические ут­верждения и теоремы.

Ему же принадлежит идея символических обозначений, которые, по его мнению, должны служить указателями мышлению. Лейбниц писал: «Истинный метод должен давать filum Aradnes (нить Ариадны), т. е. некоторое осязаемое и грубое средство, которое направ­ляло бы разум подобно начертанным линиям в геометрии... Без этого наш разум не смог бы проделать длинный путь, не сбившись с дороги». Более того, в его работах просматривается понимание идеи формализованного языка, как комбинации знаков и их сцеплений, что по­зволило бы механически получать новые истинные высказывания. Лейбниц несколько раз приступал к реализации этих своих идей, стараясь привести в систему основные правила силлогизмов Аристотеля, но всякий раз его подстерегала неудача, он сталкивался с большими трудностями, связанными с понятиями пустого множества и отрицаниями высказываний (дополнениями множеств).

Таким образом, несмотря на плодотворность идей и множество содержательных ре­зультатов, порожденных их развитием, попытки Лейбница формализовать логику Аристоте­ля закончились неудачей. Большая часть его результатов оставалась неопубликованной до начала XX века и поэтому не оказала существенного влияния на работы других математиков при формировании математической логики и теории множеств. До середины XIX века, т. е. в течение еще почти двух веков, несмотря на интерес к этому кругу вопросов, никому из мате­матиков не удалось продвинуться существенно дальше Лейбница.

Наиболее значительным продвижением в этой области следует признать результаты английского математика Дж. Буля (Boole George, 1815 - 1864), который считается создателем современной символической логики. Он ввел обозначения символами операций объединения и пересечения множеств и высказываний (дизъюнкции и конъюнкции), что придало гибкость его системе. В середине XIX века шотландским математиком Де Морганом (De Morgan Augustus, 1806 - 1871) система Буля была усовершенствована: он установил не только законы дистрибутивности.но и двойственности для логических высказываний, которые в теории множеств потом получили название законов Де Моргана. Позднее английским логиком Д. Венном (Venn John, 1834 - 1923) была разработана специальная наглядная графическая сис­тема, нашедшая применение в математической логике и теории множеств под названием диаграмм Эйлера - Венна. Однако, большинство знаков - символов, которыми теперь пользу­ется математика: , , , , \, было введено итальянским математиком Дж. Пеано (Реапо Giuseppe, 1858- 1932).

Потребности анализа и углубленное изучение функций действительной переменной, которое интенсивно проводилось с середины XVIII века, положили начало разделу матема­тики, который позже был назван теорией множеств. Работы немецкого математика Г. Канто­ра (Cantor Georg, 1845 - 1918) о тригонометрических рядах привели его к необходимости классификации некоторых «исключительных множеств», а эта задача, в свою очередь - к созданию современной теории множеств. Так что Г. Кантор считается основоположником этого раздела математики, хотя история вопроса, как мы видели, нисходит к философским школам Древней Греции. Ему принадлежит такое определение: «Под множеством понимает­ся объединение в одно общее объектов хорошо различимых нашей интуицией или мыслью». Оно почти не вызвало критики современников, но как только к понятию множества помимо основных теоретико-множественных операций (объединения, пересечения и т. п.) стали при­соединяться вполне естественные понятия числа (элементов множества) и величины (множе­ства), положение стало существенно сложнее. Так в течение трех лет с 1784-го года Кантор пытался доказать невозможность, как ему казалось, взаимно однозначного соответствия ме­жду множествами R и Rn при n >1, пока к своему удивлению он не построил такое соответст­вие. «Я это вижу, но не верю в это» - писал он Дедекинду. К концу XIX века в теории мно­жеств уже набралось несколько примеров парадоксальных множеств, нарушавших принцип:

«элемент, который определяется через совокупность элементов какого-либо множества, не может принадлежать этому же множеству». К таким парадоксальным множествам следовало бы отнести и «множество всех множеств», которое должно бы было содержать себя в каче­стве элемента. Принципиальные противоречия возникали и при сравнении множеств, со­стоящих из бесконечного числа элементов. Эти противоречия по существу так или иначе сводились к сложным философским понятиям актуальной и потенциальной бесконечности. Попытки многих математиков конца XIX - начала XX веков совершенствовать аксиоматику теории множеств (Рассел, Цермело, Френкель, фон Нейман, Гедель и т. д.) не увенчались существенным успехом: преимущества в отдельных областях математики вынуждали в дру­гих к ограничениям круга приемлемых для рассмотрения задач, будучи не в состоянии обес­печить описание всех проблем другого раздела. В итоге математики осознали печальную ис­тину невозможности создания универсальной непротиворечивой теории множеств, как азбу­ки математики в целом. Однако, символика, язык, возможность кратко записать основную логическую идею доказательства, т. е. аппарат теории множеств и, главное, ее идеи, сохра­нили свою привлекательность и используются и поныне, несмотря на понимание ограничен­ности ее возможностей. «Никто не может изгнать нас из рая, созданного для нас Кантором» - писал Д. Гильберт.