
- •Определители квадратных матриц.
- •Определители высших порядков.
- •Высшая алгебра.
- •Упражнения.
- •Модели Леонтьева и Неймана
- •Модель неймана
- •Упражнения
- •Пространство арифметических векторов
- •Исторические справки. Матрицы
- •Определители
- •Векторные пространства
- •Можества
- •Операции на бинарных отношениях. Отображения
- •Биективные отображения
- •Бинарные отношения на множестве
- •Подстановки. Группы
- •Практикум 1 по линейной алгебре.
- •Пространство арифметических векторов ……………………………….63
- •Операции на бинарных отношениях. Отображения.……………………88
Упражнения
Задачи для самостоятельного решения
1.
(Модель Леонтьева) даны: вектор
непроизводственного потребления и
матрица
межотраслевого баланса. Найдите вектор валового выпуска, обеспечивающий данный вектор потребления.
2. (Модель Неймана). Даны матрицы
технологических процессов, вектор цен Р =(1,5) и вектор – столбец:
.
Найдите интенсивности z1 и z2 технологических процессов, максимизирующие стоимость выпуска продукции за один производственный цикл, и эту саму максимальную стоимость.
Пусть модель Леонтьева задается матрицей
.
Выяснить, продуктивна ли она.
Пусть
есть валовой выпуск. Каков вектор
непроизводственного потребления?
4. Даны матрицы
технологических процессов и вектор цен P = (3,5) в модели Неймана. Найдите, сколько потребуется запасов и сколько будет произведено продукции при интенсивности z1 = 2, z2 = 3 технологических процессов.
Пространство арифметических векторов
Ранг матрицы.
Арифметические векторы.
Определение.
Всякая упорядоченная совокупность из
n
действительных чисел называется
действительным арифметическим вектором
и обозначается символом
.
Числа
x1,
x2,...,xn
называются компонентами (координатами)
арифметического вектора
.
Над арифметическими векторами вводятся следующие операции.
СЛОЖЕНИЕ:
если,
и
,
то
.
(1)
УМНОЖЕНИЕ
на число: если
- действительное число,
= (x1,
x2,...,xn)
- арифметический вектор,
то
=
(x1,
x2,...,xn)
(2)
Множество всех действительных арифметических п-компонентных векторов с введенными выше операциями сложения (1) и умножения на число (2) называется пространством действительных арифметических векторов и обозначается символом Rn.
Определение.
Система
арифметических векторов
называется линейно зависимой, если
найдутся числа1,...,n,
не равные нулю, такие, что
.
В противном случае эта система называется
линейно независимой.
Пусть
Q
- произвольное множество арифметических
векторов. Система векторов
называется базисом (иногда базой) вQ,
если выполнены следующие условия:
а) ekQ, k = 1,2,...,s
б)
система
- линейно независима;
в) для любого вектора xQ найдутся числа 1,...,s такие, что
.
(3)
Формула
(3) называется разложением вектораx
по базису В.
Коэффициенты 1,...,s
однозначно определяются вектором x
и называются координатами этого вектора
в базе В.
Справедливы следующие утверждения:
1. Всякая система векторов QRn имеет, по меньшей мере, один базис; при этом оказывается, что все базисы этой системы состоят из одинакового числа векторов, называемого рангом системы Q и обозначаемого rangQ или r(Q).
2. Ранг всего пространства Rn равен n и называется размерностью этого пространства (обозначается Rn); при этом в качестве базиса Rn можно взять следующую систему.
e1=(1,0,0,...,0)
e2=(0,1,0,...,0) (4)
. . . . . . . . . . .
en=(0,0,0,...,1)
Этот базис принято называть каноническим.
Зафиксируем
произвольный базисB
= (e1,...,en)
в пространстве Rn.
Тогда всякому вектору x
можно поставить во взаимно однозначное
соответствие столбец его координат в
этом базисе, т.е.
.
Замечание (предостережение!) Необходимо различать компоненты вектора и его координаты в некотором базисе. Мы используем для них одинаковое обозначение, хотя следует помнить, что координаты вектора совпадают с его компонентами только в каноническом базисе.
Линейные операции (1) и (2) над арифметическими векторами в координатной форме выглядят следующим образом:
Ранг матрицы.
Пусть в матрице А размера mn выбраны произвольно К строк и К столбцов (k min (m,n)).
Элементы, стоящие на пересечении выбранных строк и столбцов, образуют квадратную матрицу порядка К, определитель которой называется минором k-го порядка матрицы А.
Максимальный порядок r отличных от нуля миноров матрицы А называется ее рангом, а любой минор порядка r, отличный от нуля, - базисным минором.
Строки (столбцы) матрицы А размера mn можно рассматривать как систему арифметических векторов из Rn (соответственно Rm).
Теорема о базисном миноре. Ранг матрицы равен рангу системы ее строк (столбцов); при этом система строк (столбцов) матрицы, содержащая базисный минор, образует базис в системе всех строк (столбцов) этой матрицы.
Приведем основные методы вычисления ранга матрицы:
а) Метод окаймляющих миноров. Пусть в матрице найден минор М - k-го порядка, отличный от нуля. Рассмотрим лишь те миноры (k+1) порядка, которые содержат в себе (окаймляют) минор М:
если все они равны нулю, то ранг матрицы равен k. В противном случае, среди окаймляющих миноров найдется ненулевой минор (k+1)–го порядка, и вся процедура повторяется.
Пример 1. Найти ранг матрицы
.
Решение: Фиксируем минор 2-го порядка, отличный от нуля
Минор 3-го порядка
,
окаймляющий минор M2 также отличен от нуля. Однако оба минора 4-го порядка, окаймляющие M3, равны нулю:
(Проверте!)
Поэтому ранг матрицы А равен трем, а базисным минором является, например, M3.
б) Метод элементарных преобразований основан на том факте, что элементарные преобразования матрицы не меняют ее ранга. Используя эти преобразования, матрицу можно привести к такому виду, когда все ее элементы, кроме a11, a22,...,arr(rmin (m,n)), равны нулю. Следовательно, ранг матрицы равен r
Пример 2. Найти ранг матрицы
.
Решение: Производя последовательно элементарные преобразования, будем иметь
Ранг последней матрицы равен двум, следовательно, таков же и ранг исходной матрицы.
Пример 3. Найти ранг матрицы
.
Решение: Из второй строки вычтем первую и переставим эти строки:
(Из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5)
из третьей строки вычтем вторую строку
.
Последнюю матрицу легко привести к каноническому виду. Вычитая первый столбец, умноженный на подходящие числа, из следующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменятся. Затем, вычитая второй столбец, умноженный на подходящие числа, из следующих столбцов, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу
.
Ранг этой матрицы равен 2, следовательно, таков же ранг исходной матрицы.
Свойства.
Если обозначим ранг матрицы A через rangA, то для ранга произведения AB двух квадратных матриц А и В порядка n, имеет место Неравенство Сильвестра: rangA + rangB – n rangAB min{rangA,rangB}.
Если сумма матриц А + В определена, то rang(A+B) rangA + rangB.
Любую матрицу ранга r можно представить в виде суммы r матриц ранга 1, но нельзя представить в виде суммы менее чем r таких матриц.
ЗАМЕЧАНИЕ. Неравенство Сильвестра остаётся верным и для произведения прямоугольных матриц при условии, что n обозначает число столбцов матрицы А и число строк матрицы В.
Понятие ранга матрицы используется для исследования линейной зависимости системы арифметических векторов.
Пример
4. Выяснить, является ли система
арифметических векторов
,
,
линейно
зависимой. Найти её ранг и какой-нибудь
базис.
Решение:
Запишем матрицу А,
вектор-столбцами которой являются,
.
Ранг А равен 2(почему?). Следовательно, исходная система
арифметических векторов линейно зависима, и её ранг равен 2
(по теореме о базисном миноре). Минор 2-го порядка
отличен от нуля и поэтому может быть принят за базисный. Отсюда следует, что арифметические векторы a1 и a2 образуют базис исходной системы.
УПРАЖНЕНИЯ.
Найти ранг матрицы методом окаймляющих миноров
1.
2.
3.
.
Вычислить ранг матрицы методом элементарных преобразований
4.
5.
6.
.
7. Выяснить, являются ли следующие системы векторов линейно зависимыми или линейно независимыми:
a)
=
(1,1,1,1),
=
(1,-1,1,1),
=
(1,-1,1,-1),
=
(1,1,-1,-1).
б)
=
(4,-5,2,6),
=
(2,-2,1,3),
=
(6,-3,3,9),
=
(4,-1,5,6).
8. Найти ранг и какой-нибудь базис заданной системы
a)
=
(5,2,-3,1),
=
(4,1,-2,3),
=
1,1,-1,-2),
=
( 3,4,-1,2).
б)
=
(2,-1,3,5),
= (4,-3,1,3),
=
3,-2,3,4),
=
(4,-1,15,17),
=
(7,-6,-7,0).
9. Найти ранг и все базисы системы
а)
=
(1,2,0,0),
=
(1,2,3,4),
=
(3,6,0,0).
б)
=
(1,2,3,4),
=
(2,3,4,5),
=
(3,4,5,6),
=
(4,5,6,7).