Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
26. Философия математики.docx
Скачиваний:
110
Добавлен:
16.04.2015
Размер:
67.8 Кб
Скачать

Principia Mathematica

«Principia Mathematica», - это трёхтомный труд, а также грандиозный проект по сведению математики к логике Бертрана Рассела и Альфреда Уайтхеда. Она была бы также невозможна без Джузеппе Пеано и Готлоба Фреге, чьи достижения в этой области эта книга должна была объединить и подвести им некий итог.

Также одной из главных задач была попытка избежать парадокса в системе Фреге, который обнаружил Бертран Рассел. В этой книге авторы пытались создать универсальный логический язык, который мог бы преобразовать не только саму математику, но и математический анализ. Ещё одной целью было выкидывание из математики недоказуемых теорем (аксиом) и неопределяемых терминов, и, несомненно, логический язык должен был избавить логику и математику от парадоксов.

Работа была встречена с небывалым энтузиазмом и долго обсуждалась в научных кругах, так, к примеру, Анри Пуанкаре в связи с этой работой выдвинул опровержение самой концепции логицизма. Тем не менее, были получены результаты, которые сделали возможным строгое доказательство того, что «чистая» математика вообще не может быть сведена к логике, трактуемой, как этого хотел Рассел. 31

Именно эта работа подтолкнула Гёделя к созданию своих теорий об их принципиальной неполноте и о невозможности доказать непротиворечивость такой системы средствами логики, формализуемыми в этой же системе. Позднее многие последователей логицизма пытались исправить недостатки системы Рассела с помощью «конструктивного номинализма», трактующего множества как коллективы, состоящие из отдельных конкретных вещей.

Заключение

Анализ рассмотренных основных направлений философского обоснования математики показывает, что ни одно из них не принесло удовлетворяющего решения. Вместе с тем каждое из них внесло многие уточнения в понимании математики как таковой.

Логицизмом был разработан важнейший для математики аппарат символической логики и, конечно же, теория типов, применение которой в анализе какой-либо области знания позволяет показательно разграничить уровни используемых понятий.

Интуиционистское, а том числе и конструктивное направления, показали возможность другого построения математических объектов, тем самым выявив неизученные области в понимании математики и ее реальном значении. Особенно эффективными явились идеи конструктивной ветви течения, существенно уточнившие методы построения объектов. Нельзя забывать и о разработках алгоритма и теории доказательств, с помощью которой разрабатывали новые способы проверки знания. Самое интересное, что эти методы ни в коей мере не мешает аксиоматическим.

Многим современная наука обязана Брауэру и Вейлю, в особенности пробуждением интереса к интуитивным аспектам математического творчества. Если рассматривать интуицию не с математической точки зрения, определение которой появилось благодаря интуиционистам, то кажется, что сама интуиция противостоит строгим методам логики. При более внимательном же рассмотрении обнаруживается, что обе стороны научного творчества дополняют друг друга, содействуя, каждая своими средствами, единой цели поиска истины.

Критика заставила математику задуматься о себе самой, провести анализ над своим содержанием, принципами, методами. Это повлекло за собой глубокий анализ природы науки. В связи с этим Г. Вейль заметил, что под ударами Брауэра и его последователей многое казавшееся ранее бесспорным, было поставлено под сомнение, и математик со скорбью смотрел на то, «как словно туман расплывалась большая часть его высоко вознесшихся теорий».

Нельзя также умолчать об успехах формализма, ведь именно его усилиями была развита новая область математического метода – метаматематика.

Когда А. Гильберт, формализуя аксиоматическое построение, ввел в качестве исходных объекты, лишенные какого бы то ни было конкретного содержания и в данном отношении «бессмысленные», этим еще не исключалась возможность формулировать о таких объектах содержательные высказывания. Такие высказывания о вроде бы лишенных смысла объектах формализованной математики принадлежат уже не ей самой, а метаматематике, то есть теории, в которой говорим о математических терминах и высказываниях. Гильберт и обосновывает метаматематику, как науку о символах системы, их упорядочении, соединении в формулы и так далее.

С успехами формалистского направления связано также развитие аксиоматического метода. Он требует лишь одного, чтобы объекты удовлетворяли нужным правилам. Этим формализм обратил внимание на необходимость уточнения математических отношений, тем самым очищая их от лишних значений.

Несмотря на то, что Гёдель доказал неполноту учения формалистов, это не означает, что его теоремы отвергают полностью то, что сделано представителями этого течения. Теоремы утверждают лишь невозможность абсолютно полной формализации теоретической системы.

Вот такие главные результаты, полученные ведущими течениями в области обоснований математики. Каждое из этих направлений показали разные взгляды на математический метод, что помогло ему расшириться и обрести свою полноту, раскрывая новые стороны монументального здания математики. Тем самым можно подвести итог, что кризисы помогают посмотреть на вещи с другой стороны и, если и не найти точный ответ на проблему, но тем самым подготовить всё для её решения.