Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика методички / Математическая обработка.doc
Скачиваний:
162
Добавлен:
16.04.2015
Размер:
993.79 Кб
Скачать

§ 2. Обработка косвенных измерений. Функция одной переменной. (Формулы переноса ошибок).

Пусть искомая физическая величина Yявляется функцией измеряемой величиныx.

Y =f(x)

Так как величина x не может быть определена абсолютно точно, то и рассчитанное значениеY будет содержать погрешность. Значение искомой функции следует находить, как функцию среднего арифметического значения измеренной величины, то есть в формулу для ее определения подставить вычисленное среднее значение

Как определить погрешность функции, если известна погрешность аргумента?

Для этого пользуются известным соотношением между дифференциалом функции df(x)и бесконечно малым приращением аргументаdx:

Полагая xdx, аYdY , получаем выражение для погрешности функции:

(17)

где x =tp,n-1 Sx , производная функцииприx=.

Иногда оказывается удобнее (проще) вычислить сначала относительную погрешность, а уже зная ее, определить доверительный интервал. Учитывая то, что: легко видеть, что относительную погрешность функции можно вычислить, воспользовавшись следующей формулой:

(18)

§ 3 Обработка косвенных измерений. Функция многих переменных. (Формулы переноса ошибок)

В общем случае искомая физическая величина может быть функцией не одной, а нескольких измеряемых величин, то есть: Y=f(X1,X2,…Xn)Каждая из величинX1,X2,…Xn определяется с соответствующей погрешностью X1,X2,…Xn. В этом случае средняя квадратичная погрешность функции будет равна корню квадратному из суммы квадратов частных производных функции по всем независимым переменным, домноженным на среднеквадратичную погрешность соответствующей величины:

(19)

В данной формуле каждая скобка под корнем представляет собой вклад погрешности соответствующей величины в погрешность функции. Если погрешности различных измеряемых величин определены с одной и той же доверительной вероятностью, то формулу можно переписать в следующем виде:

(20)

Относительная погрешность функции может быть вычислена по формуле:

(21)

Приведенные формулы справедливы для любых функциональных зависимостей, однако, они довольно громоздки, производить по ним расчеты бывает достаточно сложно, они требуют больших затрат времени. В некоторых случаях бывает удобнее использовать выражения, преобразованные для частных случаев функциональной зависимости. Рассмотрим несколько таких частных случаев.

Погрешность алгебраической суммы

Пусть функция имеет вид:

, тогда среднеквадратичная погрешность такой функции будет определяться:

(22)

а выборочная дисперсия:

(23)

То есть выборочная дисперсия алгебраической суммы равна сумме выборочных дисперсий отдельных независимых переменных.Обратите внимание, на то, что в выражение для выборочной дисперсии функциивсе слагаемые входятсознаком «+»,независимо от того, с каким знаком соответствующая величина входила в алгебраическую сумму.

Погрешность произведения.

Пусть функция имеет вид:

или

В этих случаях, воспользовавшись формулой (21) и, учитывая то, что логарифм произведения равен сумме логарифмов, получаем выражение для относительной погрешности функции:

(24)

То есть относительная погрешность произведения (и частного) равна корню квадратному из суммы квадратов относительных погрешностей всех сомножителей. Также как и в случае суммы, обратите внимание, на то, что все слагаемые под корнемберутся со знаком «+», независимо от того вчислитель или знаменательвыражения функции они входили.

Производить расчет по этой формуле обычно гораздо проще, чем по формуле (19), а доверительный интервал искомой величины легко найти: .

Погрешности некоторых элементарных функций.

  1. , где С=const;

  2. ;

  3. ;