Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Амбивалентные системы Кирий.doc
Скачиваний:
20
Добавлен:
14.04.2015
Размер:
3.51 Mб
Скачать
    1. Принцип управляемого противоречия

Изначально понятие гомеостазиса, впервые сформулированное У. Кенноном на основе идей К. Бернара, содержало изложение лишь некоторого общего принципа поддержания постоянства внутреннего состояния в живых системах без раскрытия механизмов управления, которые обеспечивают реализацию этого принципа [5].

Первая попытка модельного проникновения в сущность явления гомеостазиса и установления возможных механизмов, лежащих в его основе, принадлежит Р. Эшби, построившему модель ультраустойчивой системы, названной им гомеостатом. Гомеостат Эшби представлявший собой систему потенциометрических схем, воспроизводил лишь функциональные стороны явления и не имел целью адекватное отображение сущности тех процессов, которые лежат в основе гомеостазиса живых систем.

Следующий важный шаг в развитии гомеостатики сделал С.Бир. Он указал два новых принципиальных момента: иерархический принцип построения гомеостатических структур для управления сложными объектами и принцип живучести. Ст.Бир сделал определенные попытки по использованию некоторых гомеостатических принципов при практической разработке организационных структур управления, где пытался провести некоторые кибернетические аналогии между живой системой и сложным производством [7].

В дальнейшем было несколько этапов развития, подъемов и спадов этого научного направления.

Качественно новый этап в развитии этого направления наступил после опубликования идей и формальной модели гомеостата отечественным ученым Ю.М. Горским в начале 80-х годов.

Как пишет Ю.М. Горский [5], толчком к созданию новых взглядов явилась беседа его с Гансом Селье. Критикуя существующие методы моделирования управления в живом за то, что они не рассматривают антагонистических отношений между частями живого, Г. Селье сказал примерно следующие: «…если удастся включить в модели, отражающие работу живых систем, противоречия, да еще при этом понять, почему природа, создавая живое, пошла по такому пути, - это будет новым прорывом в тайны живого с большим практическим выходом».

Гомеостатика требует объединения усилий ученых разных специальностей: биологов, медиков, техников, кибернетиков, философов. Гомеостатика как новая научная дисциплина в области управления делает пока только первые шаги. Она показывает принципы, на основе которых могут создаваться высоко адаптивные, живучие и помехоустойчивые технические системы управления и передачи информации, а также структурно-интеллектуальные вычислительные системы.

Раскрытие глубинных механизмов поддержания гомеостазиса ведет к необходимости изучения роли противоречия и осмысления различных проявлений закона единства и борьбы противоположностей.

Главной особенностью гомеостатической системы является наличие в ней нескольких противоположностей, находящихся в состоянии противоречия. Противоречия могут быть конфликтные, дружественные, антагонистические, более того, противоречия эти являются управляемыми за счет некоторого запаса ресурсов по управлению. В гомеостатических системах действует закон единства и борьбы противоположностей в самой его глубинной сущности, когда один и тот же элемент системы содержит в себе противоположности, которые в процессе функционирования системы могут переходить одна в другую.

В последнее время все больший интерес, как математиков, физиков, биологов, так и философов привлекают исследования поведения сложных социальных систем с нелинейной структурой, в состав которой входят элементы с противоречивыми отношениями. Диалектическая точка зрения на противоречивое отношение в таких системах следующая: « Это особого рода отношение – отношение между противоположными (т.е. взаимосвязанными и в тоже время существенно различающимися, взаимоисключающимися) сторонами, свойствами предмета. Всякое несоответствие, рассогласованность в его структуре означают возникновение противоречия. И поскольку абсолютно устойчивого соответствия ни в одном реальном предмете нет, постольку противоречие носит универсальный характер, и мир находится в постоянном движении и развитии (НФС,1999,с.558) [ 10].

Большое внимание роли противоречия в технических системах уделяется в отечественной теории решения изобретательских задач [8]. Современная теория решения изобретательских задач, в сущности, является научной теорией синтеза и развития технических систем. Главными факторами новой технологии процесса изобретения являются знание законов развития систем, использование рационально организованной информации (изобретательских, геометрических, химических эффектов).

Главный закон развития технических систем - стремление к увеличению степени идеальности: идеальная техническая система - когда системы нет, а её функция выполняется. Поэтому в наиболее распространенном случае процесс решения изобретательской задачи можно рассматривать как выявление, анализ и разрешение технического противоречия [8].

Для решения особо сложных нестандартных задач используется алгоритм решения изобретательских задач [8].

Для разрешения физических противоречий в теории решения изобретательских задач существует специальный информационный фонд, включающий одиннадцать принципов разрешения противоречий:

- разделение противоречивых свойств в пространстве;

- разделение противоречивых свойств во времени;

- системный переход 1а: объединение однородных или неоднородных систем в надсистему;

- системный переход 1б: переход от системы к антисистеме или сочетанию системы с антисистемой;

- системный переход 1в: вся система наделяется свойством С, а ее части свойством анти-С;

- системный переход 2: переход к системе, работающей на микроуровне;

- фазовый переход 1: замена фазового состояния части системы или внешней среды;

- фазовый переход 2: "двойственное " состояние одной части системы (переход этой части из одного состояния в другое в зависимости от условий работы);

- фазовый переход 3: использование явлений, сопутствующих фазовому переходу;

- фазовый переход 4: замена однофазового вещества двухфазовым;

- физико-химический переход: возникновение - исчезновение вещества за счет разложения - соединения, ионизации - рекомбинации.

К этим принципам можно добавить принцип Ле Шателье (принцип подвижного равновесия): если находящаяся в равновесии система подвергается внешнему воздействию, равновесие смещается в таком направлении, которое способствует ослаблению этого воздействия.

Как видно из описания этих принципов в теории решения изобретательских задач, по существу, используются принципы построения гомеостатических систем.

Всегда ли состояние гомеостаза (постоянства внутренней среды) является эффективным с точки зрения пользователя системы? Анализ работы большого количества механических, физических и, в частности, химических технологических процессов показывает, что в состоянии равновесия наблюдается малый выход продуктов. С целью увеличения выхода продуктов рекомендуется смещать гомеостаз, усиливая влияние (роль) одной из противоположностей. Величина смещения для целого ряда технических систем может рассчитываться математическими методами, что касается общественных систем, то здесь эта проблема полностью зависит от воли руководителя.