Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций Электроника 2012.doc
Скачиваний:
1371
Добавлен:
09.04.2015
Размер:
5.34 Mб
Скачать

Лекция 9. Влияние температуры на работу транзистора в режиме нагрузки. Схемы термостабилизации

Как было отмечено в лекции 1, полупроводниковые материалы обладают отрицательной зависимостью удельного сопротивления от температуры. С ростом температуры прямое и обратное сопротивление p-nпереходов уменьшается, а токи переходов растут (рис. 9.1).

Рис. 9.1. Влияние температуры на вид вольтамперной характеристики p-nперехода

На рис. 9.1 пунктирной линией показано изменение положения прямой и обратной ветвей вольтамперной характеристики с ростом температуры. Следует отметить, что изменение температуры полупроводника может быть вызвано как влиянием окружающей температуры, так и разогревом самого полупроводника при протекании токов нагрузки.

Поскольку транзистор представляет собой два близко расположенных и влияющих друг на друга p-nперехода, изменение температуры сильно влияет на режим работы транзистора.

С ростом температуры возрастает ток коллектора, в результате чего в режиме нагрузки снижается напряжение на коллекторе, и рабочая точка смещается ближе к области насыщения.

С уменьшением температуры снижается ток коллектора, растёт напряжение на коллекторе, и рабочая точка смещается ближе к области отсечки. В результате искажается форма синусоиды выходного сигнала – теряется качество работы усилителя.

Для снижения влияния температуры в схемах усилителей применяют цепи термостабилизации. Эти цепи образуют отрицательные обратные связи (ООС), стабилизирующие режим работы транзистора по постоянному току. В результате влияния цепей термостабилизации рабочая точка усилителя удерживается в выбранном при расчёте схемы положении, и в некотором диапазоне температур режим работы усилителя практически не изменяется.

Различают два способа термостабилизации режима работы усилителя: с ООС по току базыи с ООС понапряжению база-эмиттер.

9.1. Схема термостабилизации с оос по току базы

Схема усилителя ОЭ с цепью термостабилизации с ООС по току базы представлена на рис. 9.2. Отличие данной схемы от схемы по рис. 8.1 заключается в изменении подключения резистора смещения – вместо подключения к источнику питания резистор Rсмподключён к коллектору транзистора. В результате ток базы в рабочей точкеIБ0будет зависеть от напряженияUКЭ0.

Рис. 9.2. Схема усилителя ОЭ с цепью термостабилизации с ООС по току базы

Рассмотрим работу схемы. Как было отмечено выше, с ростом температуры возрастает ток коллектора, в результате чего в режиме нагрузки снижается напряжение на коллекторе

. (9.1)

Ток базы теперь зависит от напряжения на коллекторе, и с уменьшением напряжения на коллекторе также уменьшается

. (9.2)

Ток коллектора, в свою очередь, зависит от тока базы, и с уменьшением тока базы будет уменьшаться

. (9.3)

Из выражений (9.1)…(9.3) можно записать последовательность зависимостей:

,

растёт температура, растёт ток коллектора, уменьшается напряжение на коллекторе, уменьшается ток базы, уменьшается ток коллектора. То есть, действие вызвало пропорциональное противодействие. Это называется отрицательной обратной связью по току базы. Цель термостабилизации достигнута.

Преимущество такой схемы термостабилизации заключается в её простоте. В схему не добавляется никаких новых деталей, изменяется только точка подключения резистора смещения Rсм.

Однако схема обладает существенным недостатком. Поскольку коэффициент передачи тока базы у транзисторов даже в одной партии имеет разброс до 20…30%, для каждого транзистора придётся индивидуально подбиратьRсм. Критерий правильного выбора величиныRсм – напряжение на коллекторе в рабочей точкеUКЭ0.

Другим недостатком будет ограниченный диапазон температур, в котором достигается термостабилизация. Поэтому схема термостабилизации с ООС по току базы применяется в простейших транзисторных схемах, где решающим фактором служит простота конструкции, а температура изменяется в диапазоне от 00до +350С.