
- •Государственное образовательное учреждение высшего профессионального образования
- •Санкт-Петербург
- •Информация о дисциплине
- •1.1. Предисловие
- •Содержание дисциплины и виды учебной работы
- •Объем дисциплины и виды учебной работы
- •Перечень видов практических занятий и контроля:
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа (объем 150 часов) Введение
- •Раздел 1. Случайные события (50 часов)
- •Тематический план дисциплины для студентов очно-заочной формы обучения
- •Тематический план дисциплины для студентов заочной формы обучения
- •2.3. Структурно-логическая схема дисциплины
- •Математика ч.2. Теория вероятностей и элементы математической статистики Теория
- •Раздел 1 Случайные события
- •Раздел 3 Элементы математической статистики
- •Раздел 2 Случайные величины
- •2.5. Практический блок
- •2.6. Балльно-рейтинговая система
- •Информационные ресурсы дисциплины
- •Библиографический список Основной:
- •3.2. Опорный конспект по курсу “ Математика.Часть 2 Теория вероятностей и элементы математической статистики” введение
- •Раздел 1. Случайные события
- •1.1. Понятие случайного события
- •1.1.1. Сведения из теории множеств
- •1.1.2. Пространство элементарных событий
- •1.1.3. Классификация событий
- •1.1.4. Сумма и произведение событий
- •1.2. Вероятности случайных событий
- •1.2.1. Относительная частота события, аксиомы теории вероятностей. Классическое определение вероятности
- •1.2.2. Геометрическое определение вероятности
- •Вычисление вероятности события через элементы комбинаторного анализа
- •1.2.4. Свойства вероятностей событий
- •1.2.5. Независимые события
- •1.2.6. Расчет вероятности безотказной работы прибора
- •Формулы для вычисления вероятности событий
- •1.3.1. Последовательность независимых испытаний (схема Бернулли)
- •1.3.2. Условная вероятность события
- •1.3.4. Формула полной вероятности и формула Байеса
- •Раздел 2. Случайные величины
- •2.1. Описание случайных величин
- •2.1.1. Определение и способы задания случайной величины Одним из основных понятий теории вероятности является понятие случайной величины. Рассмотрим некоторые примеры случайных величин:
- •Чтобы задать случайную величину, надо указать ее закон распределения. Случайные величины принято обозначать греческими буквами ,,, а их возможные значения – латинскими буквами с индексамиxi,yi,zi.
- •Рассмотрим события Ai , содержащие все элементарные события , приводящие к значению XI:
- •Пусть pi обозначает вероятность события Ai :
- •2.1.3. Непрерывные случайные величины
- •2.1.4. Функция распределения и ее свойства
- •2.1.5. Плотность распределения вероятности и ее свойства
- •2.2. Числовые характеристики случайных величин
- •2.2.1. Математическое ожидание случайной величины
- •2.2.2. Дисперсия случайной величины
- •2.2.3. Нормальное распределение случайной величины
- •2.2.4. Биномиальное распределение
- •2.2.5. Распределение Пуассона
- •Раздел 3. Элементы математической статистики
- •Гистограмма
- •3.3. Точечные оценки параметров распределения
- •Основные понятия
- •Точечные оценки математического ожидания и дисперсии
- •3.4. Интервальные оценки
- •Понятие интервальной оценки
- •Построение интервальных оценок
- •Основные статистические распределения
- •Интервальные оценки математического ожидания нормального распределения
- •Интервальная оценка дисперсии нормального распределения
- •Заключение
- •Глоссарий
- •4. Методические указания к выполнению лабораторных работ
- •Библиографический список
- •Лабораторная работа 1 описание случайных величин числовые характеристики
- •Порядок выполнения лабораторной работы
- •Лабораторная работа 2 Основные определения. Систематизация выборки. Точечные оценки параметров распределения. Интервальные оценки
- •Понятие статистической гипотезы о виде распределения
- •Порядок выполнения лабораторной работы
- •Ячейка Значение Ячейка Значение
- •5. Методические указания к выполнению контрольной работы Задание на контрольную работу
- •Пояснения к выполнению контрольной работы События и их вероятности
- •Случайные величины
- •Среднее квадратическое отклонение
- •Элементы математической статистики
- •6. Блок контроля освоения дисциплины
- •Вопросы для экзамена по курсу « Математика.Часть 2. Теория вероятностей и элементы математической статистики»
- •Продолжение таблицы в
- •Окончание таблицы в
- •Равномерно распределенные случайные числа
- •Содержание
- •Раздел 1. Случайные события………………………………………. 18
- •Раздел 2 . Случайные величины ..………………………… ….. 41
- •Раздел 3. Элементы математической статистики ............... . 64
- •4. Методические указания к выполнению лабораторных
- •5. Методические указания к выполнению контрольной
1.3.4. Формула полной вероятности и формула Байеса
Теорема. Пусть A - некоторое событие, и события H1, H2, , Hn , , попарно несовместные, т.е. Hi Hj= , ij, образующие полную группу, и появление одного из них и только одного есть событие достоверное.
Допустим, что событие A может произойти вместе с одним из событий Hi Тогда имеет место формула полной вероятности
p(A)
=
p(
A
Hi)
(1.10)
и
формула Байеса
p(Hi
A)=.
(1.11)
Замечание. События Hi называют гипотезами, вероятности p(Hi) - априорными вероятностями гипотез Hi, а вероятности p(HiA) - апостериорными вероятностями гипотез Hi.
Пример 1.19. В первой урне находится 4 белых и 6 черных шаров, а во второй – 2 белых и 7 черных шаров. Из первой урны во вторую наудачу перекладывают один шар. После этого из второй урны наудачу извлекают один шар.
1) Найти вероятность, что шар, извлеченный из второй урны, белый.
2) Известно, что из второй урны извлечен белый шар. Найти вероятность того, что из первой урны во вторую был переложен черный шар.
Решение. Обозначим события
H1 = {из первой урны во вторую был переложен белый шар},
H2 = {из первой урны во вторую был переложен черный шар},
A = {шар, извлеченный из второй урны, белый}.
а) По классическому определению вероятности находим вероятности гипотез H1 и H2 :
p(H1) - вероятность того, что из всех находящихся в первой урне шаров во вторую был переложен белый шар - p(H1) = 4 / 10 = 0,4,
p(H 2) - - вероятность того, что из всех находящихся в первой урне шаров во вторую был переложен черный шар - p(H2) = 6/ 10 = 0,6,
и условные вероятности:
p(A/H1) – вероятность того, что из второй урны будет вынут белый шар, при условии, что в нее был переложен белый шар - p(A/H1) = 3/10 = 0,3.
p(A/H2) - вероятность того, что из второй урны будет вынут белый шар, при условии, что в нее был переложен черный шар - p(A/H2) = 2/10 = 0,2.
Тогда по формуле полной вероятности находим вероятность искомого события A
p(A) = p(H1) p(A/H1)+p(A/H2)p(H2) = 0,40,3 +0,60,2 = 0,24.
б) Во второй части задачи требуется найти условную вероятность p(H2/A). Для этого можно использовать формулу Байеса (1.11):
p(H2/A)
=
.
Вопросы для самопроверки
Какие условия должны быть выполнены для проведения опытов по схеме Бернулли?
По какой формуле вычисляется условная вероятность?
Как вычисляется вероятность произведения:
а) для независимых событий?
б) для несовместных событий?
в) для любых других типов событий?
В чем смысл формулы полной вероятности?
В результате изучения материала раздела 1 студент может выполнить задание № 1 из методических указаний по выполнению контрольной работы по вычислительной математике, основам теории вероятностей и элементам математической статистики [ 8 ] .
Раздел 2. Случайные величины
В этом разделе содержится материал о случайных величинах: дискретных и непрерывных. Приводятся определения и описываются способы задания случайных величин с помощью ряда распределения и функции распределения. Способы определения плотности вероятности зависят от того, какое распределение имеет случайная величина. Рассматривается решение задач, в которых необходимо вычислить числовые характеристики случайных величин, а также написать выражение для плотности вероятности случайной величины, если она имеет биномиальное распределение, равномерное распределение или нормальное распределение.
Изучение материала раздела заканчивается ответами на вопросы для самопроверки и рассмотрением репетиционного теста №2, приведенного в блоке контроля и освоения дисциплины. После того, как эта часть работы проделана, студент может приступить к выполнению задачи № 2 из методических указаний к выполнению контрольной работы по вычислительной математике, основам теории вероятностей и элементам математической статистики [ 8 ].