Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПР.тех.часть3.doc
Скачиваний:
26
Добавлен:
01.04.2015
Размер:
805.38 Кб
Скачать

1.3. Схема износа режущей кромки вырубной матрицы.

Форму рабочего окна матрицы считают более совершенной , когда рабочий поясок выполнен с поднутрением 1 или вся стенка выполнена с общим уклоном ( рис. 1.4 и 1.5 ).

1

Рис. 1.4 Схема вырубной матрицы с поднутрением .

Рис. 1.5 Схема вырубной матрицы с общим уклоном .

Последний конструктивный вариант (Рис.1.5) является наиболее экономичным , так такую матрицу можно сошлифовывать на значительную глубину ( до 20 мм ) и тем самым значительно увеличить ресурс ее службы . Дело в том , что в процессе эксплуатации штампа верхний слой металла матрицы возле режущих кромок осаживается , вызывая некоторое уменьшение зазора .

Кроме того , в случае применения матрицы с постоянным уклоном требуется значительно меньшее усилие для проталкивания детали или отходов . Это ,безусловно , положительно сказывается на стойкости матрицы .

Матрицы с общим уклоном пригодны для вырубки всех видов материалов : как мягких , так и твердых .

Максимальные нагрузки на режущие кромки вырубной матрицы можно оценить с помощью следующей зависимости :

pmax = 3,6 (4s/d )в ; (1.1)

где s - толщина листовой заготовки (мм ) ;

d- диаметр или максимальная ширина детали (мм) ;

в - предел прочности материала детали (МПа) .

В соответствии с найденным значением рmax [28 ] для изготовления вырубных матриц следует применять следующие стали ( Табл.1.1 ) :

Таблица 1.1

Инструментальные стали применяемые для вырубных матриц .

Рmax (МПа) Материал

2000 У10А , У11А

2000....4000 Х12Ф1 , Х6ВФ

5000 7ХГ2ВФМ

7000 Р6М5 , Р12

Поверхности рабочего контура вырубных штампов деталей обычной точности обычно выполняют по 9...11 классу точности с шероховатостью менее Ra =0,32...0,64 мкм .

Допуски на изготовление режущего контура вырубной матрицы выполняемого по 10 классу точности обычно соответствуют следующим значениям ( табл. 1.2 ) :

Таблица 1.2

Допуски на изготовление вырубных матриц .

S дет. (мм)  (мм)

0,3 0,015

1,0 0,06

6,0 0,12

10 0,2

Таким образом , предметом исследования будет процесс получения пластинчатых вырубных матриц с общим уклоном сложноконтурного рабочего отверстия ( Рис.1.6) , выполняемых по 10 классу точности и служащих для штамповки малогабаритных (максимальный линейный размер до100...150 мм ) деталей из цветных сплавов или малоуглеродистых сталей толщиной до 2...4 мм.

Рис.1.6 Схема вырубного пластинчатого штампа с общим уклоном режущей кромки рабочего отверстия .

Широкое применение в промышленности получили различные механические методы разделения металлов, в первую очередь резка ножовочными полотнами, ленточными пилами, фрезами и др. В производстве используются разнообразные станки общего и специального назначения для раскроя листовых, профильных и других заготовок из различных металлов и сплавов. Однако при многих достоинствах этого процесса существуют значительные недостатки, связанные с низкой производительностью, высокой стоимостью отрезного инструмента, трудностью или невозможностью раскроя материалов по сложному криволинейному контуру.

В промышленности получил распространение ряд процессов разделения материалов, основанных на электрохимическом, электрофизическом и физико-химическом воздействиях. Ацитилено-кислородная резка, плазменная резка проникающая дугой и другие физико-химические методы разделения обеспечивают повышение производительности по сравнению с механическими методами, но не обеспечивают высокой точности и чистоты поверхностей реза и требуют в большинстве случаев последующей механической обработки. Электроэрозионная резка позволяет осуществлять процесс разделения материалов с малой шириной и высоким качеством реза, но одновременно с этим характеризуются малой производительностью.

В связи с этим возникла производственная необходимость в разработке и промышленном освоении методов резки современных конструкционных материалов, обеспечивающих высокую производительность процесса, точность и качество поверхностей получаемого реза. К числу таких перспективных процессов разделения материалов следует отнести лазерную резку металлов, основанную на процессах нагрева, плавления, испарения, химических реакциях горения и удаления расплава из зоны резки [34-60].

При лазерной резке отсутствует механическое воздействие на обрабатываемый материал и возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствии этого лазерную резку можно осуществлять с высокой степени точностью, в том числе легкодеформируемых и нежестких заготовок или деталей. Относительно толщины разрезаемых пластин место лазерной резки определено в диапазоне до 6...8 мм .

В этом диапазоне лазерная резка обеспечивает высокое качество реза , достаточное для того , чтобы в большинстве случаев считать эту операцию финишной , исключающей последующую обработку режущей кромки . Учитывая , что режущие пластины вырубной матрицы толщиной до 8 мм обладают достаточно высокой прочностью и жесткостью , то этот метод можно принять в качестве основного .

Благодаря большой плотности мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса. Эти особенности лазерной резки наглядно демонстрируют несомненные преимущества процесса по сравнению с традиционными методами обработки.

Преимущества лазерной резки становятся неоспоримыми в условиях получения сложноконтурных резов в условиях снижения серийности производства и быстрой смены типоразмеров получаемых изделий , т.е. в условиях гибкого автоматизированного производства . Все это делает лазеры и лазерную резку наиболее удачным компонентом гибких автоматизированных производств именно благодаря их высокой гибкости.

Последние достижения в применении процессов лазерной резки связаны с использованием автоматизированных лазерных технологических комплексов , включающих наряду с надежным лазерным излучателем технологическую оснастку с автоматизированной системой управления и компьютером [42].

Это позволяет :

  • сочетать непрерывный режим генерации излучения и импульсно - периодический при вырезке одной детали ;

  • управлять положением вектора поляризации излучения в соответствии с изменением направления резки ;

  • добавить к трем степеням свободы перемещения луча или детали еще двух и перейти к обработке объемных полостей .

Среди применяемых процессов лазерной технологии лазерная резка занимает сейчас ведущее место . Особенно увеличился масштаб применения этого процесса с появлением непрерывных СО2- лазеров мощностью около 1 кВт . Обеспечивая высокую плотность мощности излучения в зоне обработки , лазеры этого типа позволили достигнуть высоких скоростей резки.

Среди лазерных технологических процессов резка является наиболее сложно аппаратно и технологически насыщенной . Именно к лазерам для резки предъявляются повышенные требования к обеспечению временной и пространственной стабильности излучения . Лазерный пучок должен обладать минимальной расходимостью и гауссовым распределением плотности мощности по сечению.

Помимо собственно лазерного излучателя в состав комплекса для резки должна входить система управления и координатное устройство , обеспечивающее относительное перемещение луча и детали в 2-х или 3-х мерном пространстве .

Множество технологических задач контурной резки металлов может найти свое решение при увеличении степени интеграции различных процессов на основе их автоматизации .

Актуальными задачами сегодняшнего дня в совершенствовании технологии лазерной резки является расширение диапазона толщины разрезаемых материалов с сохранением высокого качества кромки реза . По видимому эта задача в основном будет решаться на основе разработки мощных ( более 5 кВт ) лазерных излучателей , генерирующих излучение на моде ТЕМ00 [35].

Таким образом , лазерная резка , уже обеспечившая себе промышленное признание , непрерывно развиваясь и совершенствуясь , ищет новые возможности использования .

В качестве такой новой задачи и является поставленная нами задача контурной вырезки рабочих отверстий в матрицах пластинчатых вырубных штампов с общим уклоном режущей кромки [30].. Схема такого процесса имеет следующий вид ( Рис. 1.7 ).

3

1 2

4

5

Рис. 1.7. Схема лазерной вырезки режущего контура в пластине матрицы вырубного штампа .

1 - излучатель ; 2 - объектив ; 3 - зеркало , 4 - обрабатываемая пластинка ;5 - стол с ЧПУ .

Помимо высокой точности и качества поверхности получаемые рабочие элементы вырубного штампа должны обладать достаточной стойкостью и ремонтопригодностью .

В общем случае стойкость штампов зависит от следующих факторов [18]. :

1. сорта и механических свойств штампуемого металла ;

2. конфигурации детали ;

3. относительной толщины материала ;

4. конструкции штампа ;

5. величины зазора между матрицей и пуансоном ;

6. применяемой инструментальной стали и способа обработки рабочих кромок режущих элементов штампа ;

7. состояния пресса на котором производят вырубку;

8. способа и типа смазки .

Очевидно , что в условиях конкретного производства одним из наиболее применимых и эффективных методов повышения стойкости вырубных штампов являются новые методы обработки их режущих кромок .

Главное место среди этих методов занимают электронно-ионные технологии 31 , которые находят все более широкое внедрение в силу ряда достоинств , присущих им :

  • высокая степень устойчивости и воспроизводимости ;

  • относительно низкая энергоемкость ;

  • экологическая чистота ;

  • относительная простота автоматизации .

Особенного внимания заслуживают электронно-ионные методы финишной обработки поверхностей изделий из инструментальных сталей 31…33 заключающиеся в распылении поверхности твердых тел с целью удаления слоя адсорбированных газов , технологических загрязнений , дефектов поверхности и снижения шероховатости . Последнее особенно актуально в случае применения процесса лазерной резки для формообразования режущего контура пластинки вырубного штампа , так как лазерная резка , к сожалению , не обеспечивает получение устойчиво- низкой шероховатости (Ra =0,32...0,63 мкм) необходимой для обеспечения качественного процесса разделения листового материала при высокой стойкости инструмента . Применение в качестве финишной операции следующего за газолазерной резкой контурного шлифования во многих случаях ( особенно при сложном контуре вырубаемой детали) сводит к минимуму достигаемый при лазерной резке экономический эффект.

Кузнечно-прессовое оборудование .

Машины кузнечно-штамповочного производства различаются по конструкции , размерам и принципу действия .

КПМ

Молоты Прессы Ротационные Импульсные Статы

паровоздушные Кривошипные

гидравлические гидравлические

взрывные винтовые

Молоты являются машинами ударного действия . в которых энергия привода перед ударом преобразуется в энергию линейного движения рабочих масс с закрепленным на них инструментом , а во время удара – в полезную работу деформирования .

Главным параметром молота является энергия запасенная массой падающих частей молота к концу их хода :

Тэv = Мv² /2 ;

где М- масса падающих частей молота ; v – скорость перемещения подвижных частей в конце холостого хода .

Подвижные части (1,2,3,4) приводятся в движение паром или сжатым воздухом при давлении ( 0,7…0,9) Мпа , подаваемым в цилиндр 8 . На нижний боек 5 , закрепленный на массивном основании – шаботе 6, помещается деформируемая заготовка .Масса шабота превышает массу падающих частей в 15….25 раз . Скорость удара составляет 6…8 м/с .

В высокоскоростных молотах , где в качестве энергоносителя используют взрывчатые вещества или высоковольтные разряд в жидкости скорость падающих частей может достигать 25 м/с. По технологическому назначению молоты подразделяют на :

Молоты

ковочные штамповочные листоштамповочные

1

8

2

3

7

4

5

6

1 – поршень ; 2 – шток ; 3 – баба ; 4 – верхний боек ;5 - нижний боек ; 6 – шабот ; 7 – направляющие ; 8 - цилиндр .

Ковочные молоты наиболее пригодны для проведения процесса ковки небольших быстро остывающих поковок . Ковку крупных поковок более успешно можно выполнять на прессах .

Обычно выпускают паровоздушные молоты молоты с массой падающих частей 1000….8000 кг .

Для получения быстро остывающих поковок массой до 0,5 кг успешно используют гидравлические и механические штамповочные молоты простого действия .

Крупные заготовки массой 60…100 кг обрабатывают двусторонними ударами на бесшаботных импульсных молотах с энергией удара ло 1500 кДЖ .

Паровоздушные штамповочные молота двойного действия изготавливают с массой падающих частей 630….25000 кг .

Листоштамповочные молоты являются наиболее подходящими при изготовлении облицовочных и других деталей летательных аппаратов из труднодеформируемых сплавов , где требуется специфический режим обработки .

Кривошипным прессом называют машину преобразующую вращательное движение привода в в прямолинейное движение рабочего органа ( ползуна ) .В кривошипных машинах заготовка деформируется за счет усилия , замыкающегося через исполнительный механизм и стол на станину .

Выполнение технологической операции осуществляется в основном за счет кинетической энергии , накопленной в маховике :

Тэω = I(ωо² – ωк² )/2 ,

где I – момент инерции маховика ; ωо, ωк – начальная и конечная скорости вращения маховика .

Кривошипные прессы различаются по назначению , особенностям конструкции , развиваемым усилиям и т.д.

На горячештамповочных прессах производят штамповку в открытых и закрытых штампах . КГШП в настоящее время являются самыми мощными кривошипными прессами и выпускаются усилием от 6,3 до 120 Мн.

2 1

М

3 4 5

15 7 8

10 9 11

16 12

13 14

  1. электродвигатель ; 2 – малый шкив ; 3 – маховик ; 4- приемный вал ; 5- шестерня ; 6 – зубчатое колесо ; 7 -муфта фрикционная ; 8 – пневмоцилиндр ; 9 – главный вал ; 10 – шатун ; 11 – уравновешиватель ; 12 – ползун ; 13 - клин – стол ;14 – нижний выталкиватель ; 15 -тормоз ; 16 - направляющая ползуна .

Вращение от электродвигателя 1 через клиноременную передачу передается на маховик 3 , расположенный на приемном валу 4 , а затем через шестерню 5 на зубчатое колесо 6 . Зубчатое колесо 6 свободно вращается на главном валу 9 пресса и крутящий момент может передаваться на него лишь при включенной муфте 7 .Благодаря кривошипно-шатунному механизму получаем поступательное движение ползуна 12 , на котором крепится рабочий инструмент . Нижняя половина штампа расположена на клин-столе 13 , в котором устроен нижний выталкиватель 14 . Останов машины осуществляется тормозом 15.

Листоштамповочные прессы предназначаются для гибки , вытяжки , пробивки , вырубки и т.д. , и выпускаются усилием от 250 КН до 20 МН .

Выпускаются также пресса двойного действия , имеющие два ползуна и предназначенные для глубокой вытяжки деталей из листа и имеющие усилие от 40 КН до 16 МН .

Чеканочные прессы служат для осуществления чеканки монет , медалей , узоров и надписей , а также калибровки поковок и выпускаются усилием от 0,6 до 40 МН .

На горизонтально-ковочных машинах из заготовок типа прутков изготавливают различные изделия путем осадки , прошивки , гибки и отрезки . Они выпускаются усилием от 1 до 31, 5 МН .

Листовой металл режут на кривошипных ножницах : высечных , вибрационных , гильотинных , а сортовой на рычажных .

Обрезные прессы предназначены для обрезки заусенцев в холодном и горячем состоянии. Их обычно изготавливают однокривошипными двухстоечными с усилием 1,6…16 МН.

Гидравлические пресса имеют важнейшие преимущества :

  • возможность создания больших усилий – до 750 МН;

  • легкость регулирования скорости хода ;

  • независимость усилия от положения поперечины с инструментом ;

  • возможность изменения направления движения поперечины в любой момент времени .

  • Скорость гидропресса составляет 0,05…0,2 м/с и эффективная энергия , превращаемая в работу пластической деформации , определяется как :

Sp

Тэр = ∫pFdS ,

0

где Sp – ход плунжера ; р – давление в рабочем цилиндре ; F – площадь поперечного сечения плунжера .

В качестве гидропривода используют насосно-безаккомуляторный , насосно-аккомуляторный и мультипликаторный . Рабочей жидкостью является минеральное масло или эмульсия .

Гидравлические прессы выпускают:

  • для ковки выпускают усилием 5…150 МН ;

  • для штамповки усилием 10…750 МН;

  • прошивные – 0,75…15 МН ;

  • для выдавливания 0,4…200 МН ;

  • листоштамповочные 0,5…10 МН ;

  • гибочные ).5…200 МН .

4

1

3

6

2

5

  1. гидравлический пресс; 2 – гидропривод ; 3 – золотниковый распределитель ; 4 – трубопроводы ; 5 – приемный бак 6- энергетическая установка .

Винтовые прессы имеют в составе главного исполнительного механизма винтовой шпиндель с несамотормозящей резьбой .

Принцип действия их заключается в разгоне подвижных частей ( винта с маховиком , ползуна и верхнего штампа ) с помощью передаточного механизма - вовремя хода вниз для получения кинетической энергии винтового и вращательного движения :

Тэ vω = Тэv +Тэω = Мv² /2 + Iω²/2 ,

где М, v – масса и скорость поступательно движущихся част ей ;

I , ω – момент инерции и угловая скорость вращающихся частей .

1 2

3

4

6

5

7

8

9

1 -,2 – диски фрикционные ; 3 – вал ; 4 – маховик ; 5 – винтовой шпиндель ; 6 – гайка ; 7 –ползун ; 8 – станина с направляющими .

Привод исполнительного механизма может быть механическим (фрикционным) , гидравлическим ( поршневым ) и электрическим( дугостаторным ).

Особенно заметно преимущество винтовых прессов при штамповке поковок с большой площадью соприкосновения со штампом , высокими и тонкими ребрами , а иакже деталей сложных профилей , изготавливаемых из труднодеформируемых сталей , конических колес с зубьями без последующей механической обработки , точной штамповки турбинных лопаток из титана , клапанов , поршней , фланцев , коленвалов .

наиболее экономично применение этих прессов в серийном и мелкосерийном производстве , где часто меняется оснастка . Именно в этих условиях их производительность выше чем у кривошипных прессов .

В импульсных машинах способ приложения нагрузки отличается от обычных прессов , поэтому в качестве основной характеристики принята энергия в импульсе .

1

2

3

4

5 6

7

  1. гидроцилиндр ; 2 – станина ; 3 – подвижная поперечина ; 4 – матрица ; 5 – заготовка ; 6 - технологическая камера ; 7 – заряд ВВ.

Наиболее распространены следующие операции : вытяжка , формовка , отбортовка , разделительные операции .

Достоинство этих машин : отсутствие громоздкого привода , широкое совмещение технологических операций , выполняемых в одном штампе , высокое качество поверхности штампуемых деталей , упрощение технологической оснастки .

Процессы штамповки обкатыванием позволяют деформировать наружные , внутренние и торцевые поверхности полых и сплошных металлических заготовок . При их реализации можно осуществлять формоизменяющие операции высадки , обратного и прямого выдавливания . Эти процессы могут осуществляться на установках торцевой раскатки или на сферодвижных прессователях .

На торец вращающейся заготовки 1 усилием Р воздействует цилиндрический свободно вращающийся валок 2 . В результате за каждый оборот заготовки происходит осадка выставленной из матрицы части заготовки на некоторую величину единичного обжатия (0,2…1,0 мм) . Окончательное оформление детали происходит за 10…30 оборотов . Ограничение радиального течения материала в сторону центра или перефирии с помощью оправки 4 или матрицы 3 обеспечивает получение деталей только с наружными или внутренними буртами .

Большие технологические возможности штамповки обкатыванием обеспечивает деформирующий инструмент выполненный в виде конического валка , расположенного под углом к оси вращения заготовки .Этот валок позволяет производить не только операции высадки но и обратного выдавливания , а также прямого выдавливания и раздачи . в установках для торцевой раскатки угол наклона оси вращения валка к оси вращения заготовки ψ составляет 5….15 град.

2 γo 2

4 1

  1. 3

    1. заготовка ; 2- раскатной валок (ролик ) ; 3- матрица ; 4 – оправка .

При дефомировании заготовок на сферодвижном прессователе заготовка устанавливается в неподвижной матрице , а деформирующий валок обкатывает заготовку . Угол наклона оси пуансона к оси заготовки составляет до 3 град . Процессы штамповки обкатыванием по сравнению с традиционными процессами штамповки позволяют в 10..15 раз снизить усилие деформирования . Особенно это эффективно при изготовлении низких заготовок (диаметр/высоту = 10 и более ) или для заготовок с тонкостенными элементами . В этом случае значительно снижается напряжение на контакте инструмента и заготовки .

Обычно рср = (2,5….4,0)σs ; а площадь контакта с кольцевой заготовкой :

Fк= 0,5αк (Rн²-Rвн²) ;

где αк= {2Δhitg (π/2-γo)/[Rн(1+δ/Rн)]}½+ рср/ tg (π/2-γo)/χ;

δ- смещение центра валка относительно оси заготовки ;

γo – начальный угол наклона оси валка к оси заготовки ;

χ = πЕ/[16(1 +ν²)];

Е – модуль упругости ;

ν- коэффициент Пуассона .

Низкая стоимость оснастки , незначительное время подготовки производства , использование оборудования небольшой мощности для изготовления крупногабаритных деталей дают возможность применять эти процессы и в мелкосерийном производстве .

Технологические переходы внедренного процесса получения полой детали с дном и фланцем имеют следующий вид :

По старой технологии деталь выполнялась точением из медного прутка диаметром 75 мм на универсальном металлорежущем оборудовании . По новой технологии исходным материалом служит труба из меди марки МОб диаметром 65 мм с толщиной стенки 7,5 мм . На мерные заготовки трубы разрезают на пилах либо на токарных автоматах резцом или роликом . Затем заготовки отжигают , промывают , смазывают и направляют на операцию холодного выдавливания . Формообразование дна и фланца детали производится после холодного выдавливания без промежуточного отжига методом сферодвижной штамповки

По следующему режиму : усилие штамповки – 90 КН ,;

число колебаний пуансона – 16.

При данном процессе можно достигнуть полного закрытия в дне стакана увеличив количество колебаний до 20.

Приданной технологии экономится до 1 кг меди на одно изделие , а трудоемкость токарных работ – на 46% .