
- •Предисловие
- •Глава 1. Основные понятия
- •1.1. Задачи и цель науки о сопротивлении материалов и ее значение для инженерного образования
- •1.2. Геометрическая классификация объектов
- •1.3. Классификация внешних сил
- •1.4. Расчетная схема
- •1.5. Допущения о свойствах материала
- •1.6. Внутренние усилия в поперечных сечениях бруса
- •1.6.1. Основные понятия
- •1.6.2. Метод сечений
- •1.6.3. Основные виды деформаций бруса
- •1.6.4. Определение внутренних усилий
- •1.6.5. Алгоритм построения эпюр
- •1.6.7. Интегральные зависимости между внутренними силовыми факторами и внешней нагрузкой
- •1.6.8. Примеры и правила построения эпюр
- •1.6.9. Методика построения эпюр в программном продукте MathCAD
- •1.7. Напряжения. Понятие о напряженном состоянии
- •1.8. Перемещения точки и линейного отрезка
- •1.9. Допущения о характере деформаций
- •Вопросы для самопроверки
- •Варианты вопросов в билетах ЕГЭ
- •Глава 2. Геометрические характеристики поперечных сечений брусьев
- •2.1. Моменты сечения
- •2.2. Центр тяжести сечения и свойство статического момента
- •2.3. Зависимости между моментами инерции относительно параллельных осей
- •2.4. Вычисление моментов инерции простых фигур
- •2.5. Изменение моментов инерции при повороте координатных осей
- •2.6. Главные оси и главные моменты инерции
- •2.7. Свойство моментов инерции относительно осей симметрии
- •2.8. Свойство моментов инерции правильных фигур относительно центральных осей
- •2.9. Вычисление моментов инерции сложных фигур
- •2.10. Примеры определения главных центральных осей и главных моментов инерции сечений
- •Вопросы для самопроверки
- •3.1. Основные понятия
- •3.2. Дифференциальные уравнения равновесия материальной частицы тела в случае плоской задачи
- •3.3. Исследование напряженного состояния в данной точке тела
- •3.4. Главные площадки и главные напряжения
- •3.5. Экстремальные касательные напряжения
- •3.6. Понятие об объёмном напряженном состоянии
- •3.6.1. Главные напряжения
- •3.6.2. Экстремальные касательные напряжения
- •3.6.3. Напряжения на произвольно наклонённых площадках
- •Вопросы для самопроверки
- •Варианты вопросов в билетах ЕГЭ
- •4.1. Соотношения Коши
- •4.2. Относительная деформация в произвольном направлении
- •4.3. Аналогия между зависимостями для напряженного и деформированного состояний в точке
- •4.4. Объёмная деформация
- •Вопросы для самопроверки
- •Варианты вопросов в билетах ЕГЭ
- •5.1. Закон Гука при растяжении и сжатии
- •5.2. Коэффициент Пуассона
- •5.3. Закон Гука при плоском и объёмном напряженных состояниях
- •5.4. Закон Гука при сдвиге
- •5.5. Потенциальная энергия упругих деформаций
- •5.6. Теорема Кастильяно
- •Вопросы для самопроверки
- •Варианты вопросов в билетах ЕГЭ
- •Глава 6. Механические характеристики материалов
- •6.1. Общие сведения о механических испытаниях материалов
- •6.2. Машины для испытания материалов
- •6.3. Образцы для испытания материалов на растяжение
- •6.6. Влияние температуры и других факторов на механические характеристики материалов
- •6.7.1. Особенности почвенной среды
- •6.7.2. Модели механического поведения почв
- •6.7.3. Образцы и схемы испытаний образцов почв
- •6.8. Расчетные, предельные, допускаемые напряжения
- •Вопросы для самопроверки
- •Варианты вопросов в билетах ЕГЭ
- •Глава 7. Теории предельного состояния материала
- •7.1. Основные понятия
- •7.2. Теория наибольших нормальных напряжений (первая теория прочности)
- •7.3. Теория наибольших относительных удлинений (вторая теория прочности)
- •7.4. Теория наибольших касательных напряжений (третья теория прочности)
- •7.5. Энергетическая теория (четвёртая теория прочности)
- •7.6. Теория Мора (феноменологическая теория)
- •7.8. Теории предельного состояния почв
- •7.9. Концентрация напряжений и её влияние на прочность при постоянных во времени напряжениях
- •7.10. Механика хрупкого разрушения
- •Вопросы для самопроверки
- •Глава 8. Растяжение и сжатие
- •8.1. Напряженное состояние в точках бруса
- •8.1.1. Напряжения в поперечных сечениях
- •8.1.2. Напряжения в наклонных сечениях
- •8.2. Перемещения при растяжении (сжатии)
- •8.2.1. Перемещение точек оси бруса
- •8.2.2. Перемещения узлов стержневых систем
- •8.3. Расчеты на прочность
- •8.4. Потенциальная энергия при растяжении и сжатии
- •8.5. Статически неопределимые системы
- •8.5.1. Основные понятия
- •8.5.2. Определение напряжений в поперечных сечениях бруса, заделанного двумя концами
- •8.5.5. Расчет статически неопределимых плоских стержневых систем, подверженных действию температуры
- •8.5.6. Монтажные напряжения в статически неопределимых плоских стержневых системах
- •Вопросы для самопроверки
- •Варианты вопросов в билетах ЕГЭ
- •Глава 9. Сдвиг и кручение
- •9.1. Практический расчет соединений, работающих на сдвиг
- •9.1.1. Расчет заклёпочных, штифтовых и болтовых соединений
- •9.1.2. Расчет сварных соединений на срез
- •9.2. Кручение
- •9.2.1. Основные понятия. Крутящие моменты и построение их эпюр
- •9.2.2. Напряжения и деформации при кручении прямого бруса круглого поперечного сечения
- •9.2.3. Анализ напряжённого состояния при кручении бруса с круглым поперечным сечением. Главные напряжения и главные площадки
- •9.2.4. Потенциальная энергия при кручении бруса с круглым поперечным сечением
- •9.2.5. Расчет бруса круглого поперечного сечения на прочность и жесткость при кручении
- •9.2.6. Расчет цилиндрических винтовых пружин малого шага
- •9.2.7. Кручение тонкостенного бруса замкнутого профиля
- •9.2.8. Кручение прямого бруса некруглого поперечного сечения
- •9.2.9. Кручение тонкостенного бруса открытого профиля
- •Вопросы для самопроверки
- •Варианты вопросов в билетах ЕГЭ
- •10.1. Общие понятия
- •10.2. Прямой чистый изгиб. Определение нормальных напряжений
- •10.3. Касательные напряжения при поперечном изгибе
- •10.4. Напряжения при изгибе тонкостенных брусьев
- •10.5. Понятие о центре изгиба
- •10.6. Анализ напряженного состояния при изгибе
- •10.7. Проверка прочности брусьев при изгибе
- •10.8. Рациональная форма поперечных сечений брусьев
- •10.10. Определение перемещений в балках постоянного сечения методом непосредственного интегрирования
- •10.11. Определение перемещений в балках постоянного сечения методом начальных параметров
- •Вопросы для самопроверки
- •Варианты вопросов в билетах ЕГЭ
- •Приложения

В. А. Жилкин
(соответствующую пределу прочности в при испытаниях на сжатие древесины поперёк волокон) условно принимается такая нагрузка, при которой кубик сжимается на 1/3 своей первоначальной высоты.
а |
б |
в |
Рис. 6.16
Прочность дерева при сжатии поперек волокон обычно в 8 10 раз меньше, чем вдоль волокон. Эти свойства дерева следует учитывать при проектировании конструкций.
6.6.Влияние температуры и других факторов на механические характеристики материалов
Описанные испытания материалов проводятся при нормальных условиях, т. е. при температуре 20 0С, непрерывном и плавном перемещении захватов машины со скоростью не более 10 мм/мин. Однако существуют различные условия, в которых приходится работать материалу машиностроительных и строительных конструкций. Например, при повышенных или при пониженных температурах, при действии радиоактивных, особенно нейтронных, проникающих излучений (ядерные реакторы) и др. Ясно, что механические свойства материалов будут изменяться и зависеть от условий эксплуатации конструкций, элементов машин и механизмов.
226

ГЛАВА6 Механические характеристики материалов
Влияние температуры. При повышении температуры для большинства материалов механические характеристики прочности (предел прочности в , предел текучести т и предел пропорциональности пр ) уменьшаются, а при понижении температуры увеличиваются. Например, у стали марки Ст3
при температуре 500o С т 140 МПа, в 250 МПа; при 600o С т 40 МПа, в 150 МПа, т. е. предел текуче-
сти т 0 и при 600…6500 наступает температурная пластичность. При отрицательных температурах у сталей увеличивается
их хрупкость: при температуре <–450 Ст3 становится хрупкой (рис. 6.17). Это свойство называется хладноломкостью.
Характеристики пластичности с повышением температуры увеличиваются, а с понижением температуры уменьшаются. При изменении температуры не остаются постоянными и физические характеристики материала: при повышении температуры модуль упругости E существенно уменьшается, а коэффициент Пуассона незначительно увеличивается – с 0,28 до 0,33.
На механические характеристики при повышенных температурах очень влияет продолжительность действия нагрузки. Вследствие этого при высоких температурах сами характеристики становятся неопределенными. Фактор времени сказывается и при нормальной температуре, но для большинства металлов его влияние незначительно и в расчетах не учитывается.
Рис. 6.17
227
В. А. Жилкин
Влияние скорости деформации. Скорость нагружения и, следовательно, скорость деформирования влияют на механические характеристики материалов. С их увеличением у материалов увеличиваются механические характеристики прочности, особенно у пластмасс и других органических материалов. На рис. 6.17 изображены диаграммы напряжений низкоуглеродистой стали при статическом и динамическом нагружениях: средняя скорость деформации равна 970 с–1. Сравнение этих диаграмм показывает, что предел текучести и временное сопротивление стали выше, а модуль упругости при динамическом испытании
практически не изменился.
Влияние ползучести. При повышенной температуре и длительном действии нагрузки постоянной величины деформации детали с течением времени возрастают. Наблюдается также постепенное уменьшение напряжений в нагруженной детали при неизменной величине деформации. Например, с течением времени уменьшается сила давления пружины на плиты пресса при неизменном расстоянии между ними, уменьшается предварительная затяжка болтовых соединений и т. д.
Отмеченные изменения, как правило, носят необрати-
мый характер. Это явление принято определять термином –
ползучесть материала.
Ползучестью называется явление изменения во време-
ни напряжений и деформаций в нагруженной детали. Различают два случая ползучести – последействие и ре-
лаксацию.
Последействием, или собственно ползучестью, называется явление роста деформаций при постоянных напряжениях, а релаксацией – уменьшение напряжений при постоянной деформации.
Последействие может быть упругим и пластическим. Последействие при упругих деформациях выражается в том, что своего конечного значения деформации достигают при нагружении, и при разгрузке исчезают полностью не сразу,
228

ГЛАВА6 Механические характеристики материалов
а по истечении некоторого времени. При пластическом последействии процесс роста деформаций развивается во времени, является необратимым и может привести к разрушению детали без увеличения нагрузки.
Падение напряжений при релаксации является следствием постепенного увеличения пластических деформаций (ползучести) в результате уменьшения упругих.
Ползучесть металлов изучается большей частью на опытах по растяжению стержней при постоянной нагрузке и температуре. Зависимость роста относительного удлинения от времени деформирования образца при постоянных напряжениях и температуре представляется графически кривыми ползучести (рис. 6.18). Вначале, как видно из диаграммы, деформации ползучести быстро нарастают, затем процесс стабилизируется, и деформации растут с постоянной скоростью. На третьей стадии перед разрушением образца скорость возрастания деформаций вновь увеличивается. В это время на образце часто появляется шейка, как и при испытаниях на разрыв в условиях нормальной температуры.
Рис. 6.18
229