Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
сборник лаб работ 1 часть 26.03.08.doc
Скачиваний:
179
Добавлен:
26.03.2015
Размер:
8.47 Mб
Скачать

2.6.6. Принцип взвешивания без применения гирь

В зависимости от принципа действия одни приборы предназначены для измерения массы, другие – для измерения веса. И те и другие основаны на использовании гравитационного притяжения тел к Земле. Однако в одних случаях взвешивание производится с использованием мер массы, в других – безгирным способом.

При взвешивании без применения гирь используются приборы, снабженные упругими весовыми элементами (пружинные, торсионные, крутильные весы и т.д.). Принцип взвешивания на таких весах основан на уравновешивании силы тяжести, действующей на тело, силой упругого сопротивления весового элемента.

Чувствительным элементом пружинных весов является пружина, один конец которой подвешивается к опоре, а другой нагружают телами с известными массами и отмечают растяжение пружины, вызванное силой веса каждого тела (рис. 2.20). По закону Гука абсолютное удлинение пружины l пропорционально весу тела Р:

l = αР. (2.72)

где α – коэффициент пропорциональности. Поскольку вес тела равен силе тяжести (в отсутствии среды), то абсолютная деформация пружины пропорциональна произведению массы тела т на ускорение свободного падения g:

. (2.73)

Рис. 2.20. Градуировка пружинных весов

Пружина обычно снабжается указателем, скользящим вдоль шкалы. При помощи пружинных весов измеряют не массу, а вес тела. Однако в большинстве случаев шкала пружинных весов градуируется при подвешивании тел с известной массой и, следовательно, проградуирована в единицах массы.

Масса тела – величина постоянная, а значение ускорения свободного падения g зависит от географической широты и высоты над уровнем моря. В связи с этим изменяется вес тела и, следовательно, показания пружинных весов зависят от места их нахождения. Пружинные весы дают верные показания только в месте их градуировки.

Кроме того, допускается, что после снятия нагрузки указатель возвращается в нулевое положение, т.е. в пружине под действием нагрузки не возникают остаточные деформации. Следует также учесть, что упругие свойства пружины зависят от температуры и изменяются со временем. Все это снижает точность пружинных весов.

В результаты измерений массы с помощью пружинных весов необходимо вводить поправки, когда такая корректировка обоснована требованиями точности.

Таким образом, определение массы тела безгирным методом требует учета множества факторов, влияющих на результат измерений, и сопряжено со значительно большими трудностями, чем измерение массы на рычажных весах.

2.6.7. Плотность вещества

Распределение массы по объему тела можно характеризовать с помощью физической величины, называемой плотностью. Плотность численно равна массе вещества, содержащейся в единице объема тела.

Если тело однородно, т.е. свойства его во всех точках одинаковы, то плотность его определяют по формуле

, (2.74)

где m – масса; V – объем тела.

Средняя плотность неоднородного вещества также равна отношению массы m тела к его объему V:

ср=. (2.75)

Плотность в данной точке объема неоднородного вещества равна

. (2.76)

В формуле (2.76) бесконечно малый объем нельзя понимать математически. Уменьшение может продолжаться лишь до определенной величины, которая, с одной стороны, достаточно мала для того, чтобы свойства тела в пределахможно было считать одинаковыми. С другой стороны, в объемедолжно содержаться большое число молекул, чтобы флуктуации не оказывали влияния на его свойства (массу и т.д.). Именно эти условия позволяют не учитывать дискpетной стpуктуpы реальных тел.

Примечание. Флуктуация – случайное отклонение значения физической величины от ее среднего значения. Обозначив флуктуацию через ∆х, получим, что

. (2.77)

Среднее арифметическое величины (2.77) равно нулю:

. (2.78)

Поэтому в качестве характеристики флуктуаций берут среднюю квадратичную флуктуацию, равную

. (2.79)

Относительная флуктуация величины х равна

. (2.80)

В статистической физике доказывается, что относительная флуктуация аддитивной величины (т.е. такой величины, значение которой для тела равно сумме значений для отдельных его частей, например, массы) обратно пропорциональна корню квадратному из числа N молекул, образующих тело:

~. (2.81)

Плотность вещества, как правило, уменьшается с ростом температуры и увеличивается с повышением давления. При переходе вещества из одного агрегатного состояния в другое плотность изменяется скачкообразно  резко уменьшается при переходе в газообразное состояние и, как правило, увеличивается при кристаллизации. Плотность некоторых веществ (воды, чугуна и др.) аномально уменьшается при переходе из жидкой фазы в кристаллическую.

За единицу плотности принимается плотность такого однородного вещества, единица объема которого содержит единицу массы вещества. В СИ единицей плотности является килограмм на кубический метр (кг/м3), в системе СГС – г/см3:

, (2.82)

. (2.83)

Примечание. В связи с введением в 1960 году Международной системы единиц (СИ) плотность воды при температуре 4°С и нормальном атмосферном давлении стала равной

.

Объем, занимаемый массой дистиллированной воды в 1 кг при температуре 40С, до 1964 г являлся единицей вместимости – литром. В СИ литр, следовательно, оказался равным

;

.

На XII Генеральной конференции по мерам и весам в 1964 г такое определение литра было отменено. Конференция постановила, что слово «литр» может использоваться лишь как специальное название, даваемое кубическому дециметру, и рекомендовала не использовать его для выражения результатов измерений объема высокой точности.