Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

патфиз учебник новый

.pdf
Скачиваний:
1423
Добавлен:
25.03.2015
Размер:
5.24 Mб
Скачать

271

Дисплазии проявляются изменением величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму ("клетки-монстры"), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов.

В качестве примеров клеточных дисплазий можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при наличии патологического гемоглобина, крупных нейронов - "монстров" при поражении коры большого мозга (туберкулезный склероз), многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе (болезнь Реклинхаузена). Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.

Типовые нарушения субклеточных структур и компонентов. Клетка представляет собой многокомпонентную систему. Она включает в себя ядро; гиалоплазму; органеллы (митохондрии, пероксиомы, рибосомы, эндоплазматическую сеть, лизосомы, пластинчатый комплекс, или комплекс Гольджи, клеточный центр, микротрубочки, микрофиламенты); метаплазматические специализированные специализированные образования (миофибриллы, нейрофибриллы, тонофибриллы, микроворсинки, десмосомы и др.); включения (трофические, секреторные, а также специфические для отдельных клеток, например, гранулы тучных клеток, или лаброцитов, содержащие серотонин, гистамин, гепарин и другие вещества). Указанные компоненты клетки окружены плазмолеммой (цитолеммой).

Повреждение клетки характеризуется большим или меньшим нарушением структуры функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаки повреждения отдельных из них.

Ядро является "носителем" генетической программы клетки. Повреждение ядра сочетается с изменением его величины и формы, числа ядрышек в нем, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двухконтурности или разрывами ядерной оболочки, слиянием ее с полоской маргинации хроматина, появлением включений, спутников ядра и др.

Митохондрии. Эти органеллы участвуют во многих внутриклеточных процессах. Главными из них являются окисление, сопряженное с фосфорилированием, ведущее к образованию АТФ и регуляции внутриклеточного содержания кальция (митохондрии обладают высокой кальциевой емкостью), калия, ионов водорода.

272

При действии патогенных факторов отмечается изменение общего числа митохондрий, а также 3структуры 0 отдельных органелл. Уменьшение числа митохондрий по отношению к общей массе клетки, в частности в печени, наблюдается при длительном голодании, после облучения организма, при сахарном диабете.

Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий являются 3уменьшение или увеличение их размеров и изменение формы 0. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембран, фрагментации и гомогенизации крист. Нередко отмечаются утрата гранулярной структуры и гомогенизация крист. Нередко отмечаются утрата гранулярной структуры и гомогенизация матрикса органелл, потеря двухконтурности их наружной мембраны, отложения в матриксе органических (миелин, липиды, гликоген) и неорганических (чаще всего соли кальция) соединений. Нарушение структуры митохондрий приводит 3к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов (Са2+, К+, Н+) внутри клетки.

Лизосомы. В норме ферменты лизосом обеспечивают обновление структур клетки при их старении или повреждении, а также уничтожение чужеродных агентов в процессе фагацитоза.

При патогенных воздействиях высвобождение и активация ферментов лизосом может привести к "самоперевариванию" (аутолизу) клетки. Повышенный выход лизосомальных гидролаз в цитоплазму может быть обусловлен механическим разрывом их мембраны или значительным повышением проницаемости ("лабилизацией") последних. Это является следствием накопления в клетках ионов водорода (внутриклеточный ацидоз), воздействия продуктов СПОЛ, токсинов и других агентов.

У человека и животных нередко выявляются также 3первичные, наследственные нарушения функций лизосом (так называемые лизосомные болезни). Они характеризуются дефицитом и (или) снижением активности лизосомальных ферментов. Это, как правило, сопровождается накоплением в клетке избытка веществ, которые в норме метаболизируются с участием энзимов лизосом. Указанные формы лизосомальных ферментопатий являются разновидностью тезаурисмозов - болезней накопления, к которым относятся как уже указывалось, 3гликогенозы, ганглиозидозы, некоторые гепатозы (сопровождающиеся накоплением в гепатоццитах липофусцина и, как правило, прямого билирубина) и др.

273

Рибосомы. Эти органеллы необходимы для реализации генетической программы клеток. С их участием происходит синтез белка на основе считывания информации с и-РНК. Поэтому около 40% массы рибосом составляет РНК. При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), состоящих обычно из нескольких рибосом - "мономеров"; уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопрвождаются снижением интенсивности синтеза белка в клетке.

Эндоплазматическая сеть. Выполняет в клетке функции накопления и распределения различных веществ (в частности, ионов кальция в миоцитах), а также участвуют в инактивации химических агентов. При повреждении отмечается расширение канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости; очаговая деструкция мембран канальцев сети, их фрагментация. Изменение структуры эндоплазматической сети может сопровождаться развитием клеточных дистрофий, нарушением распространения импульса возбуждения, сократительной функции мышечных клеток, процессов обезвреживания цитотоксических факторов (ядов, метаболитов, свободных радикалов и др.).

Пероксисомы (микротельца). Топографически тесно связаны с эндоплазматической сетью. В микротельцах содержатся различные оксидазы, участвующие в процессах окисления высших жирных кислот, углеводов, аминокислот и других (в том числе цитотоксических) субстратов расщепления перекиси водорода, различных восстановительных компонентов дыхательной цепи. При повреждениях клетки различного генеза может наблюдаться увеличение (в условиях алкогольной интоксикации, вирусной агрессии) или уменьшение (при гипоксии, действии ионизирующей радиации) числа пероксисом. Известны также первичные нарушения функций пероксисом наследственного происхождения ("пероксисомные болезни"). Они характеризуются нарушением обмена веществ в результате либо дефицита и (или) дефекта отдельных ферментов пероксисом, чаще всего каталазы, либо отсутствия микротелец в клетке.

Комплекс Гольджи. Играет существенную роль в процессах транспорта веществ в клетках с высокой метаболической и секреторной активностью, особенно в железах внутренней секреции и клетках, продуцирующих слизь. В этом комплексе также синтезируется ряд веществ (полисахариды, белки), активируются ферменты, депонируются различные соединения. С его участием "генерируются" лизосомы. Повреждение комплекса Гольджи сопровождается структурными изменениями, сходными с таковыми в эндоплазматической сети. При этом нарушаются выведение из клетки продуктов жизнедеятельности, инактивация в ней токсичных соединений, что может обусловить расстройство ее функции в целом.

274

Микротрубочки, микрофиламенты, промежуточные филаменты (цито-

кератины, нейрофиламенты, глиальные нити). Составляют "скелет" клетки, обеспечивают выполнение ее опорной, транспортной, контрактильной, двигательной функций. Повреждение цитоскелета может обусловить нарушение тока секреторных гранул или жидкостей, реализации фагоцитоза, митотического деления клеток, упорядоченного движения ресничек (например, эпителия дыхательных путей или "хвоста" сперматозоида, являющегося эквивалентом реснички).

Гиалоплазма (цитоплазматический матрикс). Представляет собой жидкую слабовязкую внутреннюю среду клетки. Основными компонентами гиалоплазмы являются внутриклеточная жидкость, различные структуры: органеллы, метаплазматические образования и включения.

Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в гиалоплазме жидкости, протеолиз или коагуляцию белка, образование "включений", не встречающихся в норме.

Изменение состояния гиалоплазмы в свою очередь существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе; на функцию органелл; на процессы восприятия регулируюших и других влияний на клетку.

Прижизненное изучение клеток показало, что в гиалоплазме наблюдаются упорядоченная циркуляция внутриклеточной жидкости, а также ритмические движения органелл. Высказываются допущения, что в различных регионах клетки и ее органеллах может циркулировать разная по составу жидкость. При повреждениях клеток возможно нарушение упорядоченного характера циркуляции цитоплазматической жидкости. Примером дисциркуляторных расстройств могут быть изменения скорости транспорта нейромедиаторов по аксонам нейронов, замедление миграции фагоцитов (вследствие медленного перемещения гиалоплазмы в псевдоподии), развитие так называемого "парциального" отека в клетках (например, отек ядра, митохондрий, миофибрилл и т.д.).

Плазмолемма. В норме выполняет защитную, барьерную, контактную, информационную, транспортную функции. При повреждении клетки указанные функции плазмолеммы страдают в большей или меньшей мере. Это обусловлено значительными изменениями ее проницаемости (чаще повышением), целостности, числа и чувствительности рецепторных структур, трансмембранных "каналов" и другими отклонениями.

Повреждение отдельной клетки (включая и отдельные ее компоненты) может нарушить межклеточные взаимодействия ("общение") и "кооперацию". В основе этого лежит изменение свойств и (или) структуры плазмолеммы, а также находящихся в ней и на ней рецепторных образований, поверхностных

275

антигенов, межклеточных стыков; отклонение от нормы "набора" и свойств метаболитов, в том числе биологически активных (медиаторов и модуляторов "общения"). Это может потенцировать степень и масштаб расстройств в уже поврежденной клетке, а также обусловить альтерацию других, интактных клеток.

Совокупность изменений субклеточных структур и их функций, клеток в целом, а также нарушение их взаимодействия и кооперации лежат в основе развития типовых патологических процессов, типовых форм патологии органов и физиологических систем, конкретных болезней и болезненных состояний.

Некроз и аутолиз. Апоптоз. Повреждение отдельных компонентов клетки влияет на состояние всех ее структур и процессов, поскольку они объединены в одну сбалансированную систему, включенную, в свою очередь, в тканевой ансамбль клеток. Такая интеграция позволяет ликвидировать последствия повреждения в отдельной клетке, если сила и выраженность его сравнительно малы (обратимое повреждение). Если взаимодействие субклеточных структур и координация внутриклеточных процессов под влиянием патогенного фактора нарушены, то нарушается и гомеостаз клетки, она погибает - некротизируется или подвергается апоптозу (необратимое повреждение).

Некроз (от греч. necros - мертвый) - гибель клеток, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу, называют некробиозом или патобиозом.

Большинство погибших клеток подвергаются аутолизу, т.е. саморазрушению структур. Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках. В процессе аутолиза принимают участие также свободные радикалы. Одним из аргументов является факт интенсификации свободнорадикальных и липопероксидных реакций в поврежденных тканях при воспалении, на определенных этапах инфаркта, опухолевого роста и при других патологических процессах.

В процессе лизиса поврежденных клеток могут принимать участие и другие клетки – фагоциты, а также микроорганизмы. В связи с этим в отличие от аутолитического механизма последний называют гетеролитическим.

Таким образом, лизис некротизированных клеток (некролиз) может обеспечиваться ауто- и гетеролитическими процессами, в которых принимают участие ферменты и другие факторы как погибших, так и контактирующих с ними живых клеток.

276

Апоптоз (от греч. аро - отсутствие, отрицание чего-либо, ptosis - падение) - генетически программируемый процесс прекращения жизнедеятельности и смерть клетки или группы клеток в живом организме 0. При этом погибшая клетка не подвергается аутолизу, а обычно поглощается и разрушается фагоцитом. Процесс апоптоза наблюдается при патологической гипертрофии тканей, воспалении, опухолевом росте; частота его нарастает по мере старения организма.

Проявления повреждения клеток

Любое повреждение клетки вызывает в ней комплекс специфических и неспецифических изменений, выявляемых различными методами: биохимическими, физикохимическими, морфологическими и др.

Под специфическими понимают изменения свойств клеток, характерные для данного фактора при действии его на различные клетки, либо свойственные лишь данному виду клеток 0 при воздействии на них повреждающих агентов различного характера. Так, повышение в любой клетке осмотического давления, сопровождается ее гипергидратацией, растяжением мембран, нарушением их целостности. Под влиянием разобщителей процесса окисление и фосфорилирования снижается или блокируется сопряжение этих процессов и уменьшается эффективность биологического окисления. Высокая концентрация в крови одного из гормонов коры надпочечников - альдостерона - обуславливает накопление в различных клетках избытка ионов натрия. С другой стороны, действие повреждающих агентов на определенные виды клеток вызывает специфическое для них (клеток) изменения. Например, влияние различных (химических, биологически, физических) патогенных факторов на мышечные клетки сопровождается развитием 3контрактуры их миофибрилл, на нейроны - формированием ими так называемого потенциала повреждения, на эритроциты - гемолизом и выходом из них гемоглобина.

Повреждение клетки всегда сопровождается комплексом и неспецифических, стереотипных, стандартных изменений в них. Они выявляются при действии разнообразных агентов. К числу часто встречающихся неспецифических проявлений альтерации клеток относятся ацидоз, чрезмерная активация свободнорадикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, дисбаланс ионов и жидкости, изменение параметров мембранного потенциала, повышение сорбционных свойств клеток.

Выявление комплекса специфических и неспецифических изменений в клетках органов и тканей дает возможность судить о характере и силе действия патогенного фактора, о степени повреждения, в также об эффективности применяемых с целью лечения медикаментозных и немедикаментозных средств. Например по изменению активности в плазме крови специфического

277

для клеток миокардита МВ-изофермента креатинфосфокиназы и содержания миоглобина в сопоставлении с динамикой уровня ионов калия (выходящего из поврежденных кардиоцитов), изменений на ЭКГ, показателей сократительной функции различных участков миокарда можно судить о степени и масштабе повреждения сердца при его инфаркте.

Общие компенсаторные механизмы при повреждении клетки. Гибель клетки

Действие на клетку патогенных факторов закономерно сопровождается активацией (или включением) реакций, направленных на устранение либо уменьшение степени повреждения и его последствий. Комплекс этих реакций обеспечивает приспособление (адаптацию) клетки к изменившимся условиям ее жизнедеятельности. К числу основных адаптивных механизмов относят реакции компенсации, восстановления, замещения утраченных или поврежденных структур и нарушений функций, защиты клеток от действия патогенных агентов, а также регуляторное снижение их функциональной активности. Весь комплекс адаптивных реакций условно можно разделить на две группы: внутриклеточные и межклеточные.

Внутриклеточные адаптивные механизмы при повреждении. К их числу можно отнести следующие.

1.Компенсация нарушений энергетического обеспечения клеток:

1)интенсификация ресинтеза АТФ в процессе гликолиза, а также тканевого дыхания в неповрежденных митохондриях;

2)активация механизмов транспорта энергии АТФ;

3)активация механизмов утилизации энергии АТФ.

2.Защита мембран и ферментов клетки:

1)повышение активности факторов системы антиоксидантной защиты;

2)активация буферных систем;

3)повышение активности ферментов детоксикации микросом;

4)активация механизмов репарации компонентов мембран и ферментов.

3.Уменьшение степени или устранение дисбаланса ионов и жидкости в клетках:

1)снижение степени нарушения энергообеспечения;

2)снижение степени повреждения мембран и ферментов;

3)активация буферных систем.

4.Устранение нарушений генетической программы клеток:

278

1)устранение разрывов в нитях ДНК;

2)ликвидация (блокада) измененных участков ДНК;

3)синтез нормального фрагмента ДНК вместо поврежденного или утраченного.

5.Компенсация расстройств механизмов регуляции внутриклеточных процессов:

1)изменение числа "функционирующих" рецепторов клетки;

2)изменение сродства рецепторов клетки к регулирующим факторам;

3)изменение активности аденилат- и(или) гуанилатциклазной систем, других "посреднических" систем;

4)изменение активности и(или) содержания внутриклеточных регуляторов метаболизма (ферментов, катионов и др.).

6.Снижение функциональной активности клеток.

7.Регенерация.

8.Гипертрофия.9. Гиперплазия.

Компенсация нарушений энергетического обеспечения клеток. При по-

вреждении клетки, как правило, в большей или меньшей мере страдают митохондрии и снижается ресинтез АТФ в процессе тканевого дыхания. Это служит сигналом для увеличения "продукции" АТФ в системе гликолиза. При слабой или умеренной степени повреждения активация ресинтеза АТФ может быть достигнута за счет повышения активности ферментов, принимающих участие в процессах окисления и фосфорилирования.

Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизации энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФазы), а также ограничение функциональной активации клетки. Последнее способствует существенному уменьшению расхода энергии АТФ.

Защита мембран и ферментов клеток. Одним из значимых механизмов по-

вреждения мембранного аппарата и энзимов клетки является интенсификация свободнорадикальных и перекисных реакций. Интенсивность этих реакций ограничивается главным образом ферментами антиоксидантной защиты

– супероксиддисмутазой (инактивирующей радикалы кислорода), каталазой и глютатионпероксидазами, расщепляющими соответственно перекиси водорода и липидов.

279

Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности ферментов лизосом, может быть активация буферных систем клетки. Это обусловливает уменьшение степени внутриклеточного ацидоза и как следствие избыточной гидролитической активности лизосомальных энзимов.

Важную роль в защите мембран и ферментов клеток от повреждению играют ферменты микросом (прежде всего эндоплазматической сети), обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д. Альтерация клеток может сопровождаться дерепрессией генов и, как следствие, активацией процессов синтеза и репарации компонентов мембран (белков, липидов, углеводов) взамен поврежденных или утраченных.

Уменьшение степени или устранение дисбаланса ионов и жидкости в клетках. При повреждении клеток устранение дисбаланса ионов и жидкости может быть достигнуто путем активации механизмов энергетического обеспечения ионных "насосов", а также 3защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса играет изменение интенсивности характера метаболизма, а также действие внутриклеточных буферных систем. Так, усиление гликолиза, сочетающегося с распадом гликогена, сопровождается высвобождением из его молекул ионов калия, содержание которого в поврежденных клетках понижено в связи с повышением поницаемости их мембран. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать 3восстановлению оптимального соотношения в гиалоплазме и трансмембранного распределения ионов калия, натрия, кальция и др., в частности, путем уменьшения содержания в клетке ионов водорода. Снижение степени дисбаланса ионов в свою очередь может сопровождаться нормализацией содержания и циркуляции внутриклеточной жидкости, объема клеток и их органелл, а также электрофизиологических параметров.

Устранение нарушений в генетической программе клеток. Изменения структуры ДНК, ведущие к повреждению клеток, могут быть обнаружены и 3устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обеспечивают обнаружение и удаление измененного участка ДНК (они получили название эндонуклеаз или рестриктаз), синтез нормального фрагмента нуклеиновой кислоты взамен удаленного (с помощью ДНК-полимераз) и встраивание вновь синтезированного фрагмента на место удаленного (с участием лигаз). Помимо этих сложных ферментных систем репарации ДНК, в клетке имеются энзимы, устраняющие "мелкомасштабные" биохимические изменения в геноме. К их числу относятся демителазы, удаляющие метильные группы; лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излечения или свободных радикалов, и др.

280

Компенсация расстройствме механизмов регуляции в нутриклеточных процессов. К числу реакций, эффективно компенсирущих нарушения механизмов восприятия клеткой регулирующих влияний, относится изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки и ее органелл, а также чувствительности (сродства) рецепторов к этим веществам. Количество рецепторов может меняться, в частности, благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависят характер и выраженность ответа на них.

Избыток или недостаток гормонов и нейромедиаторов, а также существенные колебания их активности могут быть "сдемпфированы" на уровне так называемых вторых посредников реализации нервного стимула, в частности циклических нуклеотидов и фосфоинозитольной системы. Известно, например, что соотношение цАМФ и цГМФ изменяется не только в результате действия внутриклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может в определенной мере компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

Снижение функциональной активности клеток. Важное значение среди адаптивных механизмов поврежденных клеток имеет управляемое, регулируемое снижение их функциональной активности. Это обусловливает уменьшение расхода энергии АТФ, субстратов метаболизма и кислорода, необходимых для осуществления функции и обеспечения пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функции. К числу главных механизмов, обусловливающих временное понижение функции клеток, можно отнести уменьшение эффективных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций, репрессию активности отдельных генов.

Адаптация клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие адаптивное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии.