
- •1 Классификация и строение углеводов. Функции углеводов различных классов
- •2 Классификация аминокислот и их биохимические функции
- •3 Уровни организации белков. Типы химических связей, участвующие в формировании пространственной структуры белка
- •5. Строение и функции липидов
- •3. Микроэлементы
- •19. Биологическая роль рибофлавина Рибофлави́н (лактофлавин, витамин b2) — один из наиболее важных водорастворимых витаминов, кофермент многих биохимических процессов.
- •29. Строение и классификация ферментов Функции ферментов
- •30. Конкурентное и неконкурентное ингибирование ферментов
- •31. Особенности биологического катализа
- •32. Классификация гормонов Роль гормонов в регуляции метаболизма По химическому строению известные гормоны позвоночных делят на основные классы:
- •36. Биологическая роль гормонов коры надпочечников
- •38. Гормоны щитовидной железы и их влияние на метаболизм
- •40. Механизм передачи сигнала гормонов аминокислотой и белковой природы
- •41. Биохимическая роль вторичных мессенджеров в метаболизме
- •43. Дыхательная цепь в митохондриях
- •46. Биохимические механизмы разобщения окисления и фосфорилирования факторы их вызывающие Разобщение дыхания и фосфорилирования
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках
- •48. Антиоксидантные системы клетки и их биологическая роль
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата
- •50. Механизм реакций и биологическая роль цикла кребса
- •51. Биосинтез гликогена
- •52. Гликолиз и его биологическое значение
- •54. Пентозофосфатный путь окисления углеводов
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных
- •56. Роль летучих жирных кислот в метаболизме жвачных животных
- •57. Строение клеточных мембран и их функции
- •58. Физико-химические свойства липипдов. Эмульгирование липидов
- •59. Механизм транспорта липидов
- •60. Биохимических механизм бета-окисления жирных кислот
- •62. Биологическая роль холестерина и его производных
- •63. Синтез триглицеридов и фосфолипидов
- •64. Кетоновые тела и их роль в метаболизме
- •65. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков
- •66. Биохимические механизмы переваривания белков в желудочно-кишечном тракте
- •67. Механизмы реакций трансаминирования и дехаминирования аминокислот
- •68. Декарбоксилирование аминокислот. Биологическая роль продуктов декаброксилирования
- •69. Орнитиновый цикл
- •70. Биологические механизмы окисления нуклеотидов
- •74. Строение рнк. Виды Рнк. Их роль в метаболизме
- •75. Биохимические механизмы синтеза рнк
- •76. Биохимические механизмы синтеза белка
36. Биологическая роль гормонов коры надпочечников
В коре надпочечника вырабатываются гормоны, называемые кортикостероидами или кортикоидами. Они разделяются на две основные группы: глюкокортикоиды(принимают активное участие в самых разнообразных реакциях обмена веществ. Они препятствуют развитию воспалительного процесса, вызывают инволюцию лимфатических узлов и вилочковой железы, снижают уровень лимфоцитов в крови.), выделяемые пучковой и сетчатой зонами, и минералокортикоиды(отвечают за регуляцию электролитного баланса, они стимулируют выведение из клеток ионов кальция и удержание ионов натрия.), образующиеся в наружной клубочковой зоне. Кроме того, в коре надпочечника, главным образом в сетчатой зоне, секретируются небольшие количества половых стероидов, главным образом андрогенов.
Состав секретируемых кортикостероидов различается у разных животных; у человека только три кортикоида секретируются в виде гормонов: кортизол (), альдостерон и в меньшей степени кортикостерон. В крови гормоны находятся в связанном состоянии с белком-носителем .
37. Биологическая роль гормонов поджелудочной железы Гормоны поджелудочной железыПоджелудочная железа является органом смешанной секреции. С одной стороны, она вырабатывает пищеварительные ферменты, которые по специальным каналам поступают в двенадцатиперстную кишку, при этом они находятся в неактивном состоянии. С другой стороны, ее клетки синтезируют рад гормонов, предназначенных для регуляции работы внутренних органов. Ответственны за синтез этих соединений особые клеточные скопления, называемые островками Лангерганса по имени ученого, который их открыл. Они рассредоточены по всему телу железы и не имеют специальных выводных путей. Их секрет поступает непосредственно в кровь и доставляется к органам-мишеням.
Основными гормонами поджелудочной железы являются следующие соединения:
Инсулин
Глюкагон
С-пептид
За синтез инсулина отвечают бета-клетки островков Лангерганса, его основная функция в организме состоит в понижении уровня сахара в крови. Это достигается с помощью одновременного действия по трем направлениям. Инсулин приостанавливает образование глюкозы в печени и повышает количество сахара, который усваивается тканями организма за счет увеличения проницаемости клеточных мембран. В то же время он тормозит распад глюкагона, ведь тот является полимерной цепочкой, состоящей из молекул глюкозы, и может быть использован для увеличения ее концентрации в крови. Под действием ряда факторов в организме возникает недостаток инсулина, ведущий к развитию сахарного диабета.
Выработкой глюкагона занимаются альфа-клетки островков Лангерганса, он отвечает за увеличение концентрации глюкозы в кровяном русле. Это достигается путем стимулирования ее образования в печени. Кроме того, он способствует расщепление липидов в жировой ткани. Таким образом, два описанных выше гормона поджелудочной железы выполняют противоположные функции. Однако в поддержании нормального уровня сахара в крови участвуют и другие биологически активные соединения, вырабатываемые эндокринной системой — соматотропин (гормон роста), кортизол, адреналин.
В диагностике таких заболеваний, как сахарный диабет, ожирение, акромегалия и различные патологии печени, используют анализ крови на инсулин. С-пептид, строго говоря, не является гормоном поджелудочной железы. Он представляет собой часть молекулы проинсулина, которая отделяется от нее в процессе синтеза и оказывается в кровяном русле. Поэтому количество С-пептида в сыворотке крови эквивалентно количеству инсулина, которое секретируется поджелудочной железой. Этот показатель более точен, ведь белковый фрагмент не обладает биологической активностью и не вступает в химические реакции.