Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biokhimia_..otvety_1.doc..doc
Скачиваний:
100
Добавлен:
24.03.2015
Размер:
355.84 Кб
Скачать

69. Орнитиновый цикл

Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины (в основном,в печени).Она выводится с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного, обмена. На долю мочевины приходится до 80-85% всего азота мочи. Реакции синтеза мочевины, представлены в виде цикла, получившего название орнитинового цикла мочевинообразования Кребса.

· На первом этапе синтезируется макроэргическое соединение карбамоилфосфат - это метаболически активная форма аммиака

· На втором этапе цикла мочевинообразования происходит конденсация карбамоилфосфата и орнитина с образованием цитруллина; реакцию катализирует орнитинкарбамоилтрансфераза:

На следующей стадии цитруллин превращается в аргинин в результате двух последовательно протекающих реакций. Первая из них, энергозависимая, сводится к конденсации цитруллина и аспаргиновой кислоты с образованием аргининосукцината ( эту реакцию катализирует аргининосукцинат-синтетаза). Аргининсукцинат распадается во второй реакции на аргинин и фумарат поддействием аргининосукцинат-лиазы.

На последнем этапе аргинин расщепляется на мочевину и орнитин под действием аргиназы.

70. Биологические механизмы окисления нуклеотидов

Нуклеотидами называются соединения, состоящие из азотистого основания, углевода-пентозы и фосфорной кислоты. Примером может служить уридиловая кислота:

Нуклеотиды поступают в орг в сост нуклеопротеидов. Солян кисл и протеолитич фермент желудк распад до нуклеиновых кислот и белков части. С пом дополн ферм переварива. Панкретический сок содерж рибонуклеазы и дезоксирибонуклеазы, гидролизующие все нуклеинов кисл до полинуклеотидов. После дейст панкреатич ферм полинуклеотидазы кишечника гидролизуют нукл кисл до мононуклеотидов. Далее, под действ нуклеотидаз и фосыфатах происх гидролиз нуклеотид до нуклеозидов, кот либо всасыв либо под действ нуклеозидаз слизист кишечника деградир до пуринов и пиримидинов основан. В просвет кишечн пуринов основ мог подв окисл до мочев кислоты, кот всасыв и выдел с мочейю Другие тоже в мочев кисл. Свобод пиримидины тоже выдел без использов

71. Строение молекул ДНК

Структурно пред-ет собой полимерное соед-е ,постр-е из дезоксирибонуклеотидов. У эукариотов как в ядре и в митохондриях. ДНК в прост-ве может сущ как одноцеп-ой так и двойной спирали. В моделе ДНК имеются 2 комплементарные полинуклеотидные цепи,соед-ые между собой вод связ-ми. Две нити явл-ся антипарал-ми. (ф-ция перед и хран насд инф)

Перед делением клетки происходит удвоение ДНК-реплекация. Происх-т отделение нитей друг от друга, и в доль каждой осущ сборка комплементарных нитей. Скорость завис-т от числа пар нуклеотидов днк,вход-х в геном.

1. Реплицируется не одна, а обе цепи ДНК каждой хромосомы.

2. Обе цепи ДНК реплицируются

3. ДНК-полимераза представляет собой комплекс основных ферментов репликации. Этот комплекс прикрепляется к ДНК и начинает двигаться вдоль нее. Другой фермент — ДНК-лигаза, который катализирует образование связей между соседними нуклеотидами, используя для этого энергию фосфатных связей.

4. Дочерние цепи ДНК начинают формироваться одновременно в сотнях участков обеих родительских цепей. Впоследствии концы отдельных сегментов вновь синтезированной ДНК «сшиваются» ферментом ДНК-лигазой.

5. Каждая вновь синтезированная цепь ДНК остается прикрепленной посредством слабых водородных связей к родительской цепи, используемой в качестве матрицы. Впоследствии обе цепи ДНК вместе скручиваются в спираль.

6. Каждая цепь ДНК имеет длину около 6 см и состоит из миллионов витков, поэтому раскрутить две цепи без специального механизма было бы невозможно. Это достигается с помощью ферментов, которые регулярно разрезают каждую спираль по всей длине, поворачивают ее фрагменты так, чтобы они могли расплестись, и затем вновь восстанавливают целостность каждой спирали. Так возникают две новые спирали.

72. Биохимические механизмы синтеза ДНК (вверх)

73. Репликация и репарация

Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15—20 различных белков, называемый реплисомой

Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации.