Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
AVR / datasheets / attiny_11_12.pdf
Скачиваний:
53
Добавлен:
20.03.2015
Размер:
1.15 Mб
Скачать

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATtiny11/12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electrical Characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Absolute Maximum Ratings

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*NOTICE:

Stresses beyond those ratings listed under

 

Operating Temperature..................................

 

-55°C to +125°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Absolute Maximum Ratings” may cause perma-

 

Storage Temperature .....................................

 

-65°C to +150°C

 

 

nent damage to the device. This is a stress rating

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

only and functional operation of the device at

 

Voltage on any Pin except

RESET

 

 

 

 

 

 

 

 

 

these or other conditions beyond those indicated

 

with respect to Ground ................................

 

-1.0V to VCC+0.5V

 

 

in the operational sections of this specification is

 

Voltage on

 

with respect to Ground

-1.0V to +13.0V

 

 

not implied. Exposure to absolute maximum rat-

 

RESET

 

 

ing conditions for extended periods may affect

 

Maximum Operating Voltage

 

 

 

6.0V

 

 

device reliability.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC Current per I/O Pin ...............................................

 

 

40.0 mA

 

 

 

 

 

 

 

 

DC Current VCC and GND Pins................................

 

 

100.0 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC Characteristics – Preliminary Data

 

 

 

 

 

 

 

 

TA = -40°C to 85°C, VCC = 2.7V to 5.5V for ATtiny11, VCC = 1.8V to 5.5V for ATtiny12 (Unless otherwise noted)

 

 

Symbol

 

Parameter

 

Condition

 

Min

Typ

Max

 

Units

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL

 

Input Low Voltage

 

Except (XTAL)

 

-0.5

 

(1)

 

V

 

 

 

 

 

0.3 VCC

 

 

VIL1

 

Input Low Voltage

 

XTAL

 

-0.5

 

(1)

 

V

 

 

 

 

 

0.1 VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

 

 

 

 

 

 

VIH

 

Input High Voltage

 

Except (XTAL, RESET)

 

VCC + 0.5

 

V

 

 

 

 

0.6 VCC

 

 

 

VIH1

 

Input High Voltage

 

XTAL

 

(2)

 

VCC + 0.5

 

V

 

 

 

 

0.7 VCC

 

 

 

VIH2

 

 

 

 

 

 

 

 

 

 

 

 

(2)

 

 

 

 

 

 

 

Input High Voltage

 

RESET

 

VCC + 0.5

 

V

 

 

 

 

0.85 VCC

 

 

 

VOL

 

Output Low Voltage(3)

 

IOL = 20 mA, VCC = 5V

 

 

 

0.6

 

V

 

 

Port B

 

IOL = 10 mA, VCC = 3V

 

 

 

0.5

 

V

 

 

 

 

 

 

 

 

 

VOL

 

Output Low Voltage

 

IOL = 12 mA, VCC = 5V

 

 

 

0.6

 

V

 

 

PB5 (ATtiny12)

 

IOL = 6 mA, VCC = 3V

 

 

 

0.5

 

V

 

 

 

 

 

 

 

 

 

 

 

Output High Voltage(4)

 

I

= -3 mA, V = 5V

 

4.3

 

 

 

 

V

 

VOH

 

 

 

 

 

 

OH

 

CC

 

 

 

 

 

 

 

 

 

Port B

 

IOH = -1.5 mA, VCC = 3V

 

2.3

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

IIL

 

Input Leakage Current

 

VCC = 5.5V, Pin Low

 

 

 

8.0

 

µA

 

 

I/O Pin

 

(Absolute value)

 

 

 

 

 

IIH

 

Input Leakage Current

 

VCC = 5.5V, Pin High

 

 

 

8.0

 

µA

 

 

I/O Pin

 

(Absolute value)

 

 

 

 

 

RI/O

 

I/O Pin Pull-Up

 

 

 

 

 

 

 

35

 

122

 

59

1006F–AVR–06/07

DC Characteristics – Preliminary Data (Continued)

TA = -40°C to 85°C, VCC = 2.7V to 5.5V for ATtiny11, VCC = 1.8V to 5.5V for ATtiny12 (Unless otherwise noted)

Symbol

Parameter

Condition

 

 

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

Active 1 MHz, VCC = 3V

 

 

1.0

mA

 

 

(ATtiny12V)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active 2 MHz, VCC = 3V

 

 

2.0

mA

 

 

(ATtiny11L)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active 4 MHz, VCC = 3V

 

 

2.5

mA

 

 

(ATtiny12L)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active 6 MHz, VCC = 5V

 

 

10

mA

 

 

(ATtiny11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active 8 MHz, VCC = 5V

 

 

10

mA

 

 

(ATtiny12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idle 1 MHz, VCC

= 3V

 

 

0.4

mA

 

 

(ATtiny12V)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICC

Power Supply Current

Idle 2 MHz, VCC

= 3V

 

 

0.5

mA

(ATtiny11L)

 

 

 

 

 

 

Idle 4 MHz, VCC

= 3V

 

 

1.0

mA

 

 

(ATtiny12L)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idle 6 MHz, VCC

= 5V

 

 

2.0

mA

 

 

(ATtiny11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idle 8 MHz, VCC

= 5V

 

 

3.5

mA

 

 

(ATtiny12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power Down(5), VCC

= 3V,

 

9.0

15

µA

 

 

WDT enabled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power Down(5), VCC

= 3V.

 

<1

2

µA

 

 

WDT disabled (ATtiny12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power Down(5), VCC

= 3V.

 

<1

5

µA

 

 

WDT disabled (ATtiny11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VACIO

Analog Comparator

VCC = 5V

 

 

 

 

40

mV

Input Offset Voltage

VIN = VCC/2

 

 

 

 

 

 

 

 

 

 

 

IACLK

Analog Comparator

VCC = 5V

 

 

-50

 

50

nA

Input Leakage Current

VIN = VCC/2

 

 

 

 

 

 

 

 

 

 

TACPD

Analog Comparator

VCC = 2.7V

 

 

 

750

 

ns

Propagation Delay

VCC = 4.0V

 

 

 

500

 

 

 

 

 

 

 

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low.

2.“Min” means the lowest value where the pin is guaranteed to be read as high.

3.Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all IOL, for all ports, should not exceed 100 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

4.Although each I/O port can source more than the test conditions (3 mA at VCC = 5V, 1.5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all IOH, for all ports, should not exceed 100 mA.

If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5.Minimum VCC for Power-down is 1.5V. (On ATtiny12: only with BOD disabled)

60 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

External Clock Drive

Waveforms

Figure 32. External Clock

VIH1

VIL1

External Clock Drive ATtiny11

 

 

VCC = 2.7V to 4.0V

VCC = 4.0V to 5.5V

 

Symbol

Parameter

Min

Max

Min

Max

Units

 

 

 

 

 

 

 

1/tCLCL

Oscillator Frequency

0

2

0

6

MHz

tCLCL

Clock Period

500

 

167

 

ns

tCHCX

High Time

200

 

67

 

ns

tCLCX

Low Time

200

 

67

 

ns

tCLCH

Rise Time

 

1.6

 

0.5

µs

tCHCL

Fall Time

 

1.6

 

0.5

µs

External Clock Drive ATtiny12

 

 

VCC = 1.8V to

VCC = 2.7V to

VCC = 4.0V to

 

 

 

 

2.7V

 

4.0V

 

5.5V

 

Symbol

Parameter

 

 

 

 

 

 

 

 

 

 

Min

 

Max

Min

 

Max

Min

 

Max

Units

 

 

 

 

 

 

 

 

 

 

 

 

1/tCLCL

Oscillator

0

 

1.2

0

 

4

0

 

8

MHz

Frequency

 

 

 

tCLCL

Clock Period

833

 

 

250

 

 

125

 

 

ns

tCHCX

High Time

333

 

 

100

 

 

50

 

 

ns

tCLCX

Low Time

333

 

 

100

 

 

50

 

 

ns

tCLCH

Rise Time

 

 

1.6

 

 

1.6

 

 

0.5

µs

tCHCL

Fall Time

 

 

1.6

 

 

1.6

 

 

0.5

µs

Table 29. External RC Oscillator, Typical Frequencies

R [kΩ]

C [pF]

f

 

 

 

100

70

100 kHz

 

 

 

31.5

20

1.0 MHz

 

 

 

6.5

20

4.0 MHz

 

 

 

Note: R should be in the range 3-100 kΩ, and C should be at least 20 pF. The C values given in the table includes pin capacitance. This will vary with package type.

61

1006F–AVR–06/07

ATtiny11 Typical

Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail- to-rail output is used as clock source.

The power consumption in Power-down Mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down Mode with Watchdog Timer enabled and Power-down Mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog timer.

Figure 33. Active Supply Current vs. Frequency

ACTIVE SUPPLY CURRENT vs. FREQUENCY

 

 

 

 

 

 

 

 

 

T = 25

˚

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(mA)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 4.5V

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

= 4V

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 3.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

VCC = 3.3V

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 3.0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

VCC = 2.7V

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 2.1V

VCC = 2.4V

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

= 1.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

5

6

7

 

8

9

10

11

12

13

14

15

 

 

0

1

 

Frequency (MHz)

62 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 34. Active Supply Current vs. VCC

ACTIVE SUPPLY CURRENT vs. Vcc

FREQUENCY = 4 MHz

 

10

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

TA = 25˚C

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

(mA)

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

4

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

Figure 35. Active Supply Current vs. VCC, Device Clocked by Internal Oscillator

(mA) cc

I

ACTIVE SUPPLY CURRENT vs. Vcc DEVICE CLOCKED BY 1.0MHz INTERNAL RC OSCILLATOR

6

5

TA = 25˚C

4

TA = 85˚C

3

2

1

0

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

63

1006F–AVR–06/07

Figure 36. Active Supply Current vs. VCC, Device Clocked by External 32kHz Crystal

(mA) cc

I

ACTIVE SUPPLY CURRENT vs. Vcc DEVICE CLOCKED BY 32KHz CRYSTAL

5

4.5

4

TA = 25˚C

3.5

3 TA = 85˚C

2.5

2

1.5

1

0.5

0

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

Figure 37. Idle Supply Current vs. Frequency

IDLE SUPPLY CURRENT vs. FREQUENCY

 

 

 

 

 

 

 

 

T = 25

˚

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5.5V

 

3.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(mA)

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 4.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 4V

 

I

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

VCC = 3.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

VCC = 3.3V

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 3.0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

VCC = 2.4V

 

VCC = 2.7V

 

 

 

 

 

 

 

 

 

 

VCC = 2.1V

 

 

 

 

 

 

 

 

 

 

 

 

0

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 1.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

 

8

9

10

11

12

13

14

15

Frequency (MHz)

64 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 38. Idle Supply Current vs. VCC

IDLE SUPPLY CURRENT vs. Vcc

FREQUENCY = 4 MHz

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

2

 

 

 

 

 

 

 

 

(mA)

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

Figure 39. Idle Supply Current vs. VCC, Device Clocked by Internal Oscillator

(mA) cc

I

IDLE SUPPLY CURRENT vs. Vcc

DEVICE CLOCKED BY 1.0MHz INTERNAL RC OSCILLATOR

0.35

0.3

0.25

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

0.15

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

65

1006F–AVR–06/07

Figure 40. Idle Supply Current vs. VCC, Device Clocked by External 32kHz Crystal

IDLE SUPPLY CURRENT vs. Vcc DEVICE CLOCKED BY 32KHz CRYSTAL

25

(μA) cc

I

20

TA = 25˚C

TA = 85˚C

15

10

5

0

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

Figure 41. Power-down Supply Current vs. VCC

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER DISABLED

 

9

 

 

 

 

 

 

 

 

TA = 85˚C

 

8

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

(μA)

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

5

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 

 

 

 

 

VCC (V)

 

 

 

 

 

66 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 42. Power-down Supply Current vs. VCC

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER ENABLED

 

90

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

A)

50

 

 

 

 

 

 

TA = 85˚C

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

40

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

Figure 43. Analog Comparator Current vs. VCC

ANALOG COMPARATOR CURRENT vs. Vcc

 

1

 

 

 

 

 

 

 

 

 

 

0.9

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

TA = 85˚C

 

(mA)

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

67

1006F–AVR–06/07

Analog comparator offset voltage is measured as absolute offset.

Figure 44. Analog Comparator Offset Voltage vs. Common Mode Voltage

ANALOG COMPARATOR OFFSET VOLTAGE vs.

COMMON MODE VOLTAGE Vcc = 5V

 

18

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

(mV)

12

 

 

 

 

 

 

 

 

TA = 85˚C

 

Voltage

10

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

Offset

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Common Mode Voltage (V)

Figure 45. Analog Comparator Offset Voltage vs. Common Mode Voltage

Offset Voltage (mV)

ANALOG COMPARATOR OFFSET VOLTAGE vs. COMMON MODE VOLTAGE Vcc = 2.7V

10

TA = 25˚C

8

6

TA = 85˚C

4

2

0

0

0.5

1

1.5

2

2.5

3

Common Mode Voltage (V)

68 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 46. Analog Comparator Input Leakage Current

ANALOG COMPARATOR INPUT LEAKAGE CURRENT

 

 

 

 

 

 

 

V

= 6V

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(nA)

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

VIN (V)

Figure 47. Watchdog Oscillator Frequency vs. VCC

WATCHDOG OSCILLATOR FREQUENCY vs. Vcc

 

1600

 

 

 

 

 

 

 

 

 

 

1400

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

1200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

(kHz)

1000

 

 

 

 

 

 

 

 

 

800

 

 

 

 

 

 

 

 

 

RC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

600

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC(V)

69

1006F–AVR–06/07

Sink and source capabilities of I/O ports are measured on one pin at a time.

Figure 48. Pull-up Resistor Current vs. Input Voltage

PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

 

 

 

 

 

V

= 5V

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

120

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

(μA)

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OP

60

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

VOP (V)

Figure 49. Pull-up Resistor Current vs. Input Voltage

PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

 

 

 

 

VCC = 2.7V

 

 

 

 

30

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

20

 

 

 

 

 

 

(μA)

15

 

 

 

 

 

 

OP

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOP (V)

70 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 50. I/O Pin Sink Current vs. Output Voltage

I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE

 

 

 

 

VCC = 5V

 

 

 

 

80

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

60

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

(mA)

40

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

OL

30

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOL (V)

Figure 51. I/O Pin Source Current vs. Output Voltage

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE

 

 

 

 

 

V

 

= 5V

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

18

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(mA)

10

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

VOH (V)

71

1006F–AVR–06/07

Figure 52. I/O Pin Sink Current vs. Output Voltage

I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE

 

 

V

= 2.7V

 

 

 

 

CC

 

 

 

 

30

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

25

 

 

 

 

 

20

 

 

 

 

 

 

TA = 85˚C

 

 

 

(mA)

15

 

 

 

 

 

 

 

 

 

OL

 

 

 

 

 

I

10

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

0

 

 

 

 

 

0

0.5

1

1.5

2

VOL (V)

Figure 53. I/O Pin Source Current vs. Output Voltage

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE

 

 

 

V

 

= 2.7V

 

 

 

 

 

 

CC

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

5

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

(mA)

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOH (V)

72 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 54. I/O Pin Input Threshold Voltage vs. VCC

I/O PIN INPUT THRESHOLD VOLTAGE vs. Vcc

 

 

T = 25˚C

 

 

 

A

 

 

2.5

 

 

 

2

 

 

(V)

1.5

 

 

Voltage

 

 

 

 

 

Threshold

1

 

 

 

 

 

 

0.5

 

 

 

0

 

 

 

2.7

4.0

5.0

VCC

Figure 55. I/O Pin Input Hysteresis vs. VCC

I/O PIN INPUT HYSTERESIS vs. Vcc

 

 

TA = 25˚C

 

 

0.18

 

 

 

0.16

 

 

(V)

0.14

 

 

 

 

 

Hysteresis

0.12

 

 

0.1

 

 

 

 

 

Input

0.08

 

 

 

 

 

 

0.06

 

 

 

0.04

 

 

 

0.02

 

 

 

0

 

 

 

2.7

4.0

5.0

VCC

73

1006F–AVR–06/07

ATtiny12 Typical

Characteristics

The following charts show typical behavior. These data are characterized, but not tested. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock source.

The power consumption in Power-down Mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down Mode with Watchdog Timer enabled and Power-down Mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog timer.

Figure 56. Active Supply Current vs. VCC, Device Clocked by Internal Oscillator

ACTIVE SUPPLY CURRENT vs. Vcc

DEVICE CLOCKED BY 1.2MHz INTERNAL RC OSCILLATOR

 

1.8

 

 

 

 

 

 

 

 

 

 

1.6

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

 

1.4

 

 

 

 

 

 

 

 

 

 

1.2

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

Α)

1

 

 

 

 

 

 

 

 

 

(m

 

 

 

 

 

 

 

 

 

 

cc

0.8

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

74 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 57. Active Supply Current vs. VCC, Device Clocked by External 32kHz Crystal

ACTIVE SUPPLY CURRENT vs. Vcc

DEVICE CLOCKED BY 32KHz CRYSTAL

 

140

 

 

 

 

 

 

 

 

 

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

(μΑ)

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cc

60

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

Figure 58. Idle Supply Current vs. VCC, Device Clocked by Internal Oscillator

IDLE SUPPLY CURRENT vs. Vcc

DEVICE CLOCKED BY 1.2MHz INTERNAL RC OSCILLATOR

 

0.8

 

 

 

 

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

0.5

 

 

 

 

 

 

 

 

 

(mΑ)

0.4

 

 

 

 

 

 

 

 

 

cc

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

75

1006F–AVR–06/07

Figure 59. Idle Supply Current vs. VCC, Device Clocked by External 32kHz Crystal

IDLE SUPPLY CURRENT vs. Vcc

DEVICE CLOCKED BY 32KHz CRYSTAL

 

30

 

 

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

(μΑ)

15

 

 

 

 

 

 

 

 

 

cc

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

TA = 25˚C

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

Analog Comparator offset voltage is measured as absolute offset.

Figure 60. Analog Comparator Offset Voltage vs. Common Mode Voltage

ANALOG COMPARATOR OFFSET VOLTAGE vs.

COMMON MODE VOLTAGE VCC = 5V

 

18

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

(mV)

12

 

 

 

 

 

 

 

 

TA = 85˚C

 

Voltage

10

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

Offset

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Common Mode Voltage (V)

76 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 61. Analog Comparator Offset Voltage vs. Common Mode Voltage

Offset Voltage (mV)

ANALOG COMPARATOR OFFSET VOLTAGE vs.

COMMON MODE VOLTAGE

V = 2.7V

 

CC

10

 

 

TA = 25˚C

8

 

6

TA = 85˚C

 

4

 

2

 

0

0

0.5

1

1.5

2

2.5

3

Common Mode Voltage (V)

Figure 62. Analog Comparator Input Leakage Current

ANALOG COMPARATOR INPUT LEAKAGE CURRENT

 

 

 

 

 

 

 

V

= 6V

T = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

A

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(nA)

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACLK

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

VIN (V)

77

1006F–AVR–06/07

Figure 63. Calibrated RC Oscillator Frequency vs. VCC

CALIBRATED RC OSCILLATOR FREQUENCY vs.

OPERATING VOLTAGE

 

1.22

 

 

 

 

 

TA

= 25˚C

 

 

 

 

 

 

 

 

TA = 45˚C

 

1.2

 

 

 

 

 

 

 

TA = 70˚C

 

1.18

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

1.16

 

 

 

 

 

 

 

 

(MHz)

1.14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RC

1.12

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

1.1

 

 

 

 

 

 

 

 

 

1.08

 

 

 

 

 

 

 

 

 

1.06

 

 

 

 

 

 

 

 

 

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC(V)

Figure 64. Watchdog Oscillator Frequency vs. VCC

WATCHDOG OSCILLATOR FREQUENCY vs. Vcc

 

1600

 

 

 

 

 

 

 

 

 

 

1400

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

1200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

(kHz)

1000

 

 

 

 

 

 

 

 

 

800

 

 

 

 

 

 

 

 

 

RC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

600

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

78 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Sink and source capabilities of I/O ports are measured on one pin at a time.

Figure 65. Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

 

120

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

(μA)

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OP

60

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

VOP (V)

Figure 66. Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

 

30

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

20

 

 

 

 

 

 

(μA)

15

 

 

 

 

 

 

OP

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOP (V)

79

1006F–AVR–06/07

Figure 67. I/O Pin Sink Current vs. Output Voltage (VCC = 5V)

 

70

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

50

 

 

 

 

 

 

 

40

 

 

 

 

 

 

(mA)

30

 

 

 

 

 

 

OL

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOL (V)

Figure 68. I/O Pin Source Current vs. Output Voltage (VCC = 5V)

 

20

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

16

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

(mA)

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

8

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

VOH(V)

80 ATtiny11/12

1006F–AVR–06/07

ATtiny11/12

Figure 69. I/O Pin Sink Current vs. Output Voltage (VCC = 2.7V)

OL

I (mA)

25

TA = 25˚C

20

TA = 85˚C

15

10

5

0

0

0.5

1

1.5

2

VOL (V)

Figure 70. I/O Pin Source Current vs. Output Voltage (VCC = 2.7V)

 

6

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

5

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

(mA)

3

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOH (V)

81

1006F–AVR–06/07

Figure 71. I/O Pin Input Threshold Voltage vs. VCC (TA = 25°C)

 

2.5

 

 

 

2

 

 

(V)

1.5

 

 

Voltage

 

 

 

 

 

Threshold

1

 

 

 

 

 

 

0.5

 

 

 

0

 

 

 

2.7

4.0

5.0

VCC

Figure 72. I/O Pin Input Hysteresis vs. VCC (TA = 25°C)

 

0.18

 

 

 

0.16

 

 

(V)

0.14

 

 

 

 

 

Hysteresis

0.12

 

 

0.1

 

 

 

 

 

Input

0.08

 

 

 

 

 

 

0.06

 

 

 

0.04

 

 

 

0.02

 

 

 

0

 

 

 

2.7

4.0

5.0

VCC

82 ATtiny11/12

1006F–AVR–06/07

Соседние файлы в папке datasheets