тальные» методики, с помощью которых теперь в сотнях лабораторий геологического профиля ежегодно выполняют миллионы анализов.
Металлы. Чистые металлы преимущественно анализируют на предприятиях, производящих редкие металлы и изделия из них, а также радиоэлектронную аппаратуру. Сплавы (сталь, чугун, бронза и т. п.) в технике используют гораздо чаще, чем чистые металлы. Сплавы на основе черных и цветных металлов анализируют на предприятиях черной и цветной металлургии, в лабораториях электротехнических, радиотехнических и машиностроительных предприятий. Свойства сплавов в значительной степени зависят от характера и содержания примесей, в том числе специально вводимых легирующих добавок. Например, известно о вредном влиянии висмута, олова, сурьмы, кадмия, селена и мышьяка на свойства сплавов никеля и кобальта, применяющихся для изготовления лопастей турбин самолетов. Эти примеси в концентрациях выше 10–3 % вызывают трещины и разрушения лопастей турбин. Примеси хрома и никеля в сталях делают их нержавеющими, примесь ванадия – ударопрочными.
Анализ металлов и сплавов на их основе – вероятно, наиболее древняя область химического анализа. История этого анализа очень интересна. Примером могут быть работы Т. Бергмана (конец XVIII века), который установил, чем с точки зрения химического состава отличается сталь от чугуна. Оказалось, что получение стали из чугуна требует целенаправленного снижения содержания углерода. Содержание углерода в сплавах Бергман определял, используя только что созданный им гравиметрический метод. Хими- ко-аналитические работы Бергмана стали основанием для создания научной металлургии.
Для анализа металлов и их сплавов последовательно применяли самые разные методы. В средневековье для этой цели использовали методы «пробирного искусства»», основанные на плавлении пробы с флюсами. Позднее образцы сплавов стали растворять, а компоненты определять в растворе химическими методами. В первой половине XX века основными методами анализа металлов стали электрохимические (особенно электрогравиметрия) и фотометрические. Метод атомно-эмиссионной спектроскопии (в основном с искровым возбуждением) в анализе металлов используют с 20-х гг. XX века, но металлургам обычно требовалась большая точность, чем геологам, и в анализе металлов классический атомно-эмиссионный спектральный анализ применяли не так широко, как в геологии. Зато метод атомно-абсорбционного анализа металлурги и машиностроители стали широко использовать сразу же после его изобретения. Сегодня в лабораториях главные компоненты сплавов определяют методами титриметрического анализа, электрогравиметрии, спектрофотометрии, рентгеновскими методами, а микропримеси – в основном методом атомной абсорбции, а также эмиссионным методом с применением индуктивно связанной плазмы. Для определения так называемых газообразующих примесей (водорода, кислорода, азо-
511
та, углерода, серы) применяют плавление в вакууме и масс-cпектрометрию. А сплавы на основе платиновых металлов в некоторых лабораториях анализируют, используя излучение, создаваемое ядерными реакторами.
Задачи анализа металлов и сплавов в современную эпоху многообразны: определение примесей, в том числе газообразующих (О, Η, Ν, С, S), определение легирующих добавок, анализ отдельных фаз (например, карбидных включений). Иногда необходимо определить не только общее содержание компонентов в пробе, но и их распределение по площади или глубине. Труднейшей задачей для аналитиков стал контроль быстро протекающих металлургических процессов. В ходе выплавки стали надо за 15–20 минут успеть провести несколько последовательных анализов состава расплавленного металла, определить содержание углерода, азота, серы, фосфора, легирующих металлов и периодически, чуть ли не ежеминутно, выдавать технологам быстро меняющиеся результаты анализов. Эту сложную задачу удалось решить, благодаря применению спектрального и масс-спектро- метрического анализа, с помощью средств автоматизации, а позднее – компьютерной техники.
8.2. Органические соединения
При изучении некоторого органического соединения (синтезированного или выделенного из природной смеси) химику приходится последовательно решать несколько отдельных задач:
проверка индивидуальности и чистоты образца;
качественный анализ (элементный);
количественный элементный анализ и установление брутто-формулы;
выявление функциональных групп и других структурных элементов;
идентификация соединения (для впервые синтезированных веществ – доказательство предложенной структуры).
Арсенал приемов и методов для подобных исследований сложился еще в XIX веке. К концу XX века развитие физических методов анализа существенно обновило этот арсенал, позволило устанавливать состав и структуру органических соединений гораздо быстрее и надежнее. Сегодня в лабораториях элементного и функционального анализа органических соединений применяют газовую и жидкостную хроматографию, масс-спектрометрию
низкого и высокого разрешения, ИК-спектрометрию, резонансные методы (спектрометрию ядерного магнитного резонанса для ядер водорода H1 или углерода С13). Применяют компьютерные базы данных и метод искусственного интеллекта. Но не забыты и чисто химические методы, с помощью которых когда-то были установлены состав, химические формулы и детали строения всех основных органических соединений. Эти классические методы весьма просты, достаточно надежны и доступны для любой лаборатории.
512
Каким бы методом ни были получены результаты, их проверяют, сопоставляя свойства исследуемого образца со свойствами ранее синтезированных образцов известного строения (эталонов). Еще Лавуазье писал: «У химии есть вообще два способа определить состав какого-либо вещества: синтез и анализ. Не следует считать себя удовлетворенным, пока не удастся использовать для проверки оба эти способа…»
Проверка индивидуальности и чистоты образца. Исследуемое со-
единение до начала анализа стремятся получить в максимально чистом виде. Для этой цели используют дистилляцию, перекристаллизацию, сушку, жидкостную колоночную хроматографию и другие методы. Чтобы убедиться в индивидуальности вещества, проверяют его температуру плавления и кипения (см. раздел 5.4). Затем проверяют чистоту образца, получая его хроматограммы, по возможности в разных условиях. На хроматограмме чистого соединения должен быть только один пик! Отметим, что методы ГЖХ и ВЭЖХ с высокочувствительными детекторами обеспечивают большую надежность результата, чем обычная в лабораториях органического синтеза проверка чистоты веществ методом ТСХ.
Элементный качественный анализ с применением химических реакций. Присутствие углерода и водорода в образце органического вещества обычно не проверяют. Полагают, что эти элементы присутствуют во всех случаях. Гораздо большее значение имеет проверка на присутствие галогенов, серы, мышьяка, фосфора и других гетероэлементов. Проверку ведут с помощью подходящих качественных реакций. В органическом анализе используют совершенно другие качественные реакции, чем описанные в разделе 4.1 реакции катионов и анионов. Нередко реакции выполняют, даже не переводя пробу в раствор. Зато обязательно воздействие высоких температур – для разрушения соответствующих органических соединений и выделения искомого элемента в свободном виде или в виде нового соединения.
Примерами могут быть качественные реакции на мышьяк (реакция Марша) и на хлор (проба Бейльштейна). В первом случае высокотемпературная обработка в присутствии восстановителей переводит органические соединения мышьяка в летучий арсин AsH3, который отгоняют из исследуемой пробы. Мышьяк опознают после разложения арсина на поверхности твердых веществ. Характерный черный налет свободного мышьяка не раз позволял следователям доказать присутствие этого элемента в тканях человеческого тела и таким образом установить факт отравления человека мышьяксодержащим ядом. В основе второго метода лежит способность оксида меди оказывать разрушительное действие на галогенпроизводные, сопровождающееся выделением галогеноводородов и галогенидов меди. Эти летучие продукты окрашивают пламя газовой горелки в яркий зеленый цвет, что позволяет доказать присутствие галогена в исследуемом образце.
Вместо подобных реакций можно провести спектральный или рентгенофлуоресцентный анализ исследуемого образца. Присутствие соответст-
513
вующих элементов будет установлено по положению характеристических спектральных линий.
Количественный элементный анализ. В главе 4 описывались клас-
сические методы гравиметрического определения углерода и водорода в органических соединениях, созданные Лавуазье, Либихом, Преглем и другими классиками органического анализа. Все они основаны на окислительном высокотемпературном разложении пробы до СО2 и Н2О, в некоторых из них используют специальные катализаторы (раздел 4.2). Содержание C и Н удается определить таким способом с точностью до сотых долей процента. Для определения азота пробу разлагают с выделением молекулярного азота, объем которого измеряют (метод Дюма), либо переводят весь азот в аммиачную форму, а затем определяют аммиак методом кислотно-основного титрования (метод Кьельдаля).
В настоящее время элементный анализ органических веществ проводят в основном с помощью автоматических анализаторов, в которых продукты разложения пробы определяют без их взвешивания, используя подходящие детекторы (как в хроматографическом анализе). Анализатор использует очень малые навески вещества (0,1–0,3 мг) и выдает результаты анализа (содержания углерода, водорода и азота) уже через 8–10 минут.
Содержание серы (или галогенов) нередко определяют, сжигая навеску исследуемого соединения в колбе с кислородом, содержащей металлическую платину (катализатор) и поглотительный раствор. После сгорания навески определяемые элементы переходят в поглотительный раствор в виде сульфат-ионов (или галогенид-ионов). Затем их оттитровывают, используя реакции осаждения. Такой способ анализа («метод Шенигера») дает очень хорошие результаты. Еще выше точность методов количественного анализа, вообще не требующих разложения пробы. В частности, разработаны недеструктивные методы определения серы в органических веществах и нефтепродуктах, основанные на измерении флуоресценции атомов серы в рентгеновской области спектра.
Зная содержание разных элементов в образце, можно рассчитать простейшую брутто-формулу анализируемого соединения. Чтобы перейти к действительной формуле исследуемого соединения, надо еще определить его молярную массу. В истории химии эту задачу решали, измеряя плотность паров этого соединения, температуру кипения или замерзания его растворов, осмотическое давление, вязкость и другие характеристики. В настоящее время чаще всего используют масс-спектрометрию низкого разрешения, отыскивая пик молекулярного иона. Если оказывается, что молярная масса соединения в несколько раз больше молярной массы, вычисленной по простейшей бруттоформуле, число атомов каждого элемента в молекуле увеличивают по сравнению с простейшей брутто-формулой, найденной по результатам элементного анализа. Примером может быть глюкоза. Результаты элементного анализа этого соединения: С – 40,0 %, Н – 6,7 %, 0 – 53,3 %. Отсюда легко вычисляется
514
простейшая брутто-формула – СН2О. Молярная масса такого соединения – 30 а.е.м., но в масс-спектре глюкозы есть молекулярный пик однозарядного иона с массой 180 а.е.м. Следовательно, действительная брутто-формула – С6Н12О6. Теперь надо понять, какое строение может иметь молекула глюкозы, а для этого – выявить, какие функциональные группы входят в состав этой молекулы, каково число групп каждого вида, как они расположены. Эти зада-
чи решаются методами функционального анализа.
Отметим, что брутто-формулу небольших молекул можно найти и другим путем, не определяя содержание элементов. Для этого надо, чтобы в масс-спектре пробы присутствовал пик молекулярного иона, а соотношение массы к заряду было измерено с высокой точностью, до тысячных долей единицы (так называемая масс-спектрометрия высокого разрешения). Зная точные значения массовых чисел соответствующих изотопов, можно рассчитать, какие атомы входят в молекулярный ион, а следовательно, какова брутто-формула исследуемого соединения.
Определение функциональных групп. В классическом функцио-
нальном анализе используют химические методы, основанные на применении подходящих реагентов. Известны качественные реакции на те или иные функциональные группы. Количественный функциональный анализ обычно проводят титриметрическим методом. По результатам титрования можно, например, определить, сколько карбоксильных или гидроксильных групп имеется в молекуле исследуемого соединения. В функциональном анализе применяют также электрохимические, хроматографические и фотометрические методы. Очень часто функциональную группу нельзя определить непосредственно, тогда ее с помощью подходящей химической реакции заранее превращают в другую, более активную форму, а уже затем вводят основной реагент. Примером может быть анализ эфиров после их гидролиза.
Методы функционального анализа по своей сути очень похожи на методы анализа сложных смесей, в которых определяют суммарное содержание компонентов, имеющих одну и ту же функциональную группу (так называемый структурно-групповой анализ). Например, взаимодействие с перманганатом – это и способ функционального анализа (по расходу перманганата можно определить число двойных связей в молекуле исследуемого углеводорода), и способ определения суммарного содержания непредельных углеводородов в пробе сложного состава.
Функциональный анализ с применением химических реакций в значительной степени потерял свое значение после появления методов ИК-спектро- метрии и резонансных методов. Теперь все функциональные группы исследуемого соединения и многие другие его структурные элементы можно опознать по положению пиков в ИК-спектрах (см. раздел 6.3) и в спектрах ЯМР.
Идентификация органического соединения в отсутствие посторон-
них веществ – сравнительно несложное дело, если существуют обоснованные предположения о структуре этого соединения, и надо только ответить
515
на вопрос «оно или не оно». В этом случае сопоставляют спектры пробы и соответствующих эталонов из базы данных, при условии, что они получены в одинаковых условиях. Чаще всего используют масс-спектры, спектры ЯМР, ИК- и УФ-спектры, а также спектры люминесценции (см. разделы 5.4 и 9.3). А необходимые гипотезы о возможном составе пробы возникают с учетом результатов элементного и функционального анализа, а также с учетом способа получения исследуемого соединения. Еще один способ проверки – это проверка совпадения характеристик хроматографического удерживания. Совместное использование методов газовой хроматографии и массспектрометрии позволило установить структуру всех соединений, отвечающих за запах пищевых продуктов, несмотря на их исключительно малое содержание. Естественно, вначале потребовалось разделить десятки соединений, являющихся компонентами запаха.
Гораздо более трудной, но, тем не менее, вполне разрешимой является задача установления строения ранее неизвестных (например, впервые синтезированных) веществ. В этом случае говорить об идентификации не следует, термин «идентификация» предполагает сопоставление некоторых характеристик пробы и эталона, а у впервые синтезированного вещества эталона быть не может. Для установления строения молекул впервые синтезированного соединения нужно накопить как можно больше информации – об элементном и функциональном составе пробы, о ее спектрах и хроматограммах, о реакционной способности и растворимости пробы. Структуру некоторых сложных молекул (инсулина или гемоглобина) специалисты расшифровывали годами. Теперь подобные задачи решают быстрее. Например, комбинирование УФ- и ИК-спектроскопии, ЯМР и масс-спектрометрии позволяет однозначно и достоверно установить структуру исследуемого соединения за несколько часов. Создан и ряд математических алгоритмов, помогающих установить структуру нового соединения (метод искусственного интеллекта, метод распознавания образов и др.). Познакомиться с ними можно, пользуясь дополнительной литературой.
8.3. Объекты окружающей среды и показатели их состава
Необходимость анализа объектов окружающей среды. В конце XX
века человечество столкнулось с грозной опасностью – рост энергетической и технической мощи общества, не подкрепленный научным предвидением,
привел к антропогенному загрязнению окружающей среды. Невозможно перечислить все, чем человек загрязняет атмосферу, природные воды и почву. Это смытые с полей удобрения и пестициды, использованные моющие средства и упаковочные материалы, отбросы городской канализации, огромные свалки бытовых отходов и т. п. Важнейшая составляющая антропогенного загрязнения – техногенные выбросы. Этот термин объединяет сточные
516
воды промышленных предприятий, дымовые газы тепловых электростанций, выхлопные газы транспортных средств, твердые промышленные отходы. Техногенные выбросы по массе соизмеримы с природными потоками в кругообороте химических веществ. Так, выбросы одного только диоксида серы теперь во много раз превышают его природное поступление в атмосферу. Важно, что окружающая среда загрязняется и химическими веществами, вообще не свойственными природе и очень медленно разрушающимися, – так называемыми ксенобиотиками. В частности, в почве рассеяно до 3 миллионов тонн опаснейшего хлорсодержащего пестицида – ДДТ, хотя его промышленное производство давно прекращено. Ежегодная эмиссия канцерогенного 3,4-бензпирена превышает 5 тысяч тонн, хотя смертельно опасны даже микрограммовые количества этого вещества. Результатом необратимого загрязнения окружающей среды подобными веществами стало исчезновение многих видов животных и растений, повышение частоты рождения детей с генетическими нарушениями, кислотные дожди, «озоновые дыры» в атмосфере, изменение климата (в том числе глобальное потепление), нехватка чистой воды и многое другое.
Для достоверного выявления размеров опасности и борьбы с дальнейшим загрязнением нашей планеты в конце XX века потребовалась и была создана система эколого-аналитического мониторинга. Многочисленные лаборатории контролируют элементный, изотопный и особенно молекулярный состав объектов окружающей среды, выявляя динамику их загрязнения.
Всферу эколого-аналитического мониторинга входят:
природные воды разного типа (пресные воды рек и других водоемов, морская вода, грунтовые и подземные воды, атмосферные осадки);
атмосферный воздух (в частности, на рабочем месте, в жилой зоне, «чистый» воздух вдали от источников загрязнения и т. п.);
почва и донные отложения;
материалы растительного и животного происхождения, не прохо-
дившие технической обработки: овощи, фрукты, злаковые культуры, листья растений, мох, хвоя и пр.
Кроме этих, чисто природных объектов, при изучении экологических проблем аналитики исследуют состав сточных вод, газовых выбросов, бытового мусора, твердых промышленных отходов и других выбросов в окружающую среду. Этим нередко занимаются те же лаборатории, которые контролируют состав объектов окружающей среды. Но способы анализа техногенных выбросов, пищевых продуктов и биоматериалов сильно отличаются от способов анализа объектов окружающей среды. Далее будут рассмотрены способы анализа только двух, но зато наиболее важных объектов – при-
родных вод и атмосферного воздуха.
Организация анализа окружающей среды. Химические анализы воды и воздуха начали проводить очень давно. Так, еще в конце XVII века Бойль изучал состав минеральных вод Англии. В XVIII веке Лавуазье опре-
517
делил в атмосферном воздухе содержание его наиболее важного компонента
– кислорода. В конце XIX века были обнаружены инертные газы и некоторые другие микрокомпоненты, присутствующие в воздухе благодаря естественному кругообороту веществ. По современным данным, содержание водорода в чистом воздухе – около 10–4 %, оксида углерода – 2 · 10–5 %, озона – 7 · 10–6 %, аммиака – 2 · 10–6 %. В начале XX века стали систематически определять естественные микропримеси в природных водах, а также такие показатели их состава, как жесткость, кислотность и окисляемость. Однако сегодня, говоря об анализе природных вод или атмосферного воздуха, обычно имеют в виду другие показатели состава, характеризующие содержание токсикантов – опасных веществ техногенного происхождения. Исследовать локальные изменения состава воды и воздуха, связанные с техногенными выбросами, начали в XX веке. Особое внимание токсикантам в окружающей среде стали уделять в 70-х гг. XX века.
Подчеркнем, что токсикантами в объектах окружающей среды занимается множество людей и организаций. Их определяют ученые-экологи в ходе своих научных исследований, энтузиасты природоохранных общественных движений («зеленые»), даже студенты и школьники. Но основное значение имеет работа профессиональных химиков-аналитиков – сотрудников специальных государственных организаций, систематически контролирующих загрязнение воздуха и воды по множеству показателей. Те же организации следят за реальным объемом техногенных выбросов и за соблюдением соответст-
вующих законов предприятиями. Контроль чистоты воздуха и природных вод стал делом государственной важности, более того – общей заботой всего международного сообщества. На основе специальных исследований установлены международные и национальные нормативы, определяющие предельно допустимые значения каждого контролируемого показателя, а также рекомендации по способам определения этих показателей.
В России содержание токсикантов в природных объектах нормирует-
ся в виде предельно допустимых концентраций (ПДК), которые устанавли-
ваются в опытах на животных, утверждаются Минздравом РФ и периодически пересматриваются. Существуют целый ряд таких показателей: предель- но-допустимые концентрации для атмосферного воздуха – среднесуточные и максимально разовые (в литературе они обозначаются символами ПДКсс и ПДКм.р); для воздуха рабочей зоны – ПДКр.з, для питьевой воды – ПДКв и т. п. Набор токсичных микропримесей техногенного происхождения, обнаруживаемых в некоторой местности, не является постоянным. Содержание каждой примеси в воздухе, а также в воде водоемов (реки, озера) постоянно меняется. Именно поэтому состав воздуха и воды необходимо определять снова и снова. Анализы проводят в соответствии с установленным для данного показателя регламентом (несколько раз в сутки, ежедневно, еженедельно, по особому указанию и т. п.). Результат анализа сопоставляют с величиной ПДК. Следует отметить, что в СССР были установлены, а в России в
518
основном сохранены особо жесткие (по сравнению с другими странами) нормативы на предельное содержание токсикантов (табл. 8.1).
Таблица 8.1
Предельно допустимые концентрации некоторых токсикантов (в мг/м3) (по стандартам СССР 80-х гг.)
Токсикант |
Атмосферный воздух, |
Воздух |
|
среднесуточная концентрация |
рабочей зоны |
||
|
|||
Ацетон |
0,35 |
200 |
|
Аммиак |
0,15 |
5 |
|
Бензол |
0,1 |
5 |
|
Серы(IV) оксид |
0,05 |
10 |
|
Азота(II) оксид |
0,06 |
30 |
|
Азота(IV) оксид |
0,04 |
2 |
|
Хлор |
0,03 |
1 |
|
Формальдегид |
0,012 |
0,5 |
|
Фенол |
0,003 |
0,3 |
|
Сероводород |
0,008 |
10 |
|
Ртуть (пары) |
0,0003 |
0,01 |
|
Свинец |
0,0003 |
0,01 |
|
Бериллий |
0,00001 |
0,001 |
|
3,4-Бензпирен |
0,000001 |
0,00015 |
Содержание токсикантов в объектах окружающей среды контролируют организации природоохранного профиля (центры мониторинга среды) и региональные центры санэпиднадзора. Воздух на рабочих местах и сточные воды анализируют заводские контрольно-аналитические лаборатории. А наиболее «грязные» объекты – например, газовые выбросы из труб заводов и тепловых электростанций – контролируют региональные центры Ростехнадзора. Все эти организации имеют в своем составе крупные и хорошо оснащенные лаборатории. Очевидно, что информация, поступающая из разных лабораторий, должна быть сопоставимой, поэтому для определения каждого токсиканта повсеместно используются одни и те же методики анализа – надежные, унифицированные, прошедшие аттестацию на международном или национальном уровне. Стандартные методики определения токсикантов разрабатывают специальные научно-исследовательские институты.
В системе контроля объектов окружающей среды работают тысячи высококвалифицированных специалистов. Возможны три способа организации такого контроля.
1. Непрерывная регистрация соответствующих показателей с по-
мощью подходящих сенсоров. Примером может быть анализ воздуха с помощью специальных газоанализаторов или непрерывно работающих датчи-
519
ков (см. раздел 5.6). Оптические газоанализаторы, предназначенные для определения метана, оксида или диоксида углерода в воздухе, по принципу своего действия довольно похожи на систему дистанционного управления телевизором. Они тоже содержат источник и приемник ИК-излучения, разнесенные на строго определенное расстояние. Длина волны ИК-излучения должна быть характерна для того или иного определяемого вещества. Повышение концентрации этого вещества в воздухе между источником и приемником приведет к усилению поглощения света и ослаблению фототока. Результаты измерений непрерывно передаются в центральный компьютер, регистрирующий сигналы многих сенсоров (из разных точек контроля). Аналитический сигнал можно автоматически выразить в единицах концентрации токсиканта с помощью предварительно построенной градуировки. К сожалению, большинство опасных токсикантов так определять не удается – слишком мала их концентрация. Кроме того, поглощение ИК-излучения молекулами токсиканта часто недостаточно селективно, на аналитический сигнал влияют и другие компоненты исследуемой среды.
2.Внелабораторный контроль состава объектов с помощью тест-
методов. Некоторые показатели состава можно определять химическими или физико-химическими методами вне специализированной лаборатории. Это возможно, если для проведения анализа не нужна пробоподготовка, не требуется сложное стационарное оборудование. Внелабораторный анализ объектов окружающей среды ведут по упрощенным методикам, с помощью портативных приборов или с помощью простейших тест-средств. Тест-методы анализа объектов окружающей среды будут рассмотрены в разделе 8.6.
3.Лабораторный контроль. Обойтись без пробоотбора и без доставки пробы в специализированную аналитическую лабораторию в подавляющем большинстве случаев не удается. Способы отбора проб воздуха и воды будут рассмотрены в разделе 8.4, а методики анализа отобранных проб – в разделе 8.5.
Если по результатам проведенных анализов оказывается, что содержание какого-либо токсиканта в некоторой местности систематически превышает уровень ПДК, природоохранные организации выявляют конкретный источник техногенного загрязнения и принимают меры по снижению выбросов. Для каждого предприятия устанавливается предельно допустимый объем выбросов (ПДВ). Размер платежей за природопользование определяется с учетом реального объема выбросов и содержания токсикантов в сточных водах и газовых выбросах данного предприятия. Контролирующие и природоохранные организации могут налагать штрафы на предприятия, сильно загрязняющие окружающую среду, требовать изменения технологии и, что наиболее важно, ограничивать либо вообще закрывать особо опасные производства.
Показатели состава объектов окружающей среды. Какие же пока-
затели состава определяют в контрольно-аналитических лабораториях природоохранного профиля? Во-первых, – некоторые интегральные показатели,
520
