Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1 курс / Химия / Uchebnik_Osnovy_analiticheskoy_khimii

.pdf
Скачиваний:
31
Добавлен:
23.03.2024
Размер:
5.83 Mб
Скачать

фаза находится внутри тонкой и длинной колонки, через которую под давлением пропускают газ или жидкость. Частный случай колоночной хроматографии – капиллярная хроматография, в этом случае длина колонки может достигать нескольких сотен метров при внутреннем диаметре порядка 1 мм. Напротив, в тонкослойной (ТСХ) и бумажной хроматографии неподвижная фаза – плоский слой пористого материала, сквозь который жидкость движется благодаря силам поверхностного натяжения.

Еще один способ классификации учитывает состав подвижной фазы. В частности, в элюентной хроматографии ПФ – поток непрерывно подаваемого в колонку чистого инертного газа (газа-носителя) или жидкого растворителя (элюента). Именно так делил компоненты хлорофилла М.С. Цвет. Элюентная хроматография позволяет полностью разделить компоненты смеси, но их концентрация в ходе разделения сильно понижается, что нежелательно. Другие способы хроматографирования (фронтальный и вытеснительный) не ведут к сильному разбавлению пробы. В первом случае подвижной фазой служит сама анализируемая смесь, во втором – вспомогательное вещество, которое сильнее поглощается неподвижной фазой, чем все компоненты смеси, и вытесняет их из колонки. Однако полное разделение компонентов пробы в обоих случаях не достигается. Поэтому такие варианты в современной практике хроматографического анализа применяют довольно редко. В дальнейшем будет рассматриваться лишь наиболее распространенный метод – элюентная хроматография.

Часто используется классификация методов по механизму разделения веществ. Разная скорость движения компонентов пробы через неподвижную фазу может объясняться:

различиями в адсорбционных свойствах молекул при их поглощении поверхностью твердой неподвижной фазы (адсорбционная хроматография);

неодинаковой растворимостью компонентов в неподвижной жидкой фазе (распределительная хроматография);

разной способностью компонентов к ионному обмену (ионообменная хроматография);

различным размером молекул (молекулярно-ситовая хроматография).

Этот перечень можно продолжать и далее, так как известно около двух десятков разных механизмов взаимодействия компонентов пробы с неподвижной фазой, но перечисленные выше четыре меха-

471

низма встречаются чаще всего. Механизм взаимодействия компонентов пробы с неподвижной фазой определяет, какие смеси можно делить в том или ином случае. Например, распределительную газожидкостную хроматографию преимущественно используют для разделения легко испаряемых органических соединений, молекулярноситовую – для анализа смесей природных полимеров (белков, полисахаридов и т. п.), а ионообменную – для определения ионов в водных растворах сложного состава. Иногда реальный хроматографический процесс имеет смешанный механизм, возможность разделения компонентов смеси определяется сразу двумя-тремя факторами (например, и размером молекул, и их адсорбционными свойствами).

Механизм взаимодействия компонентов пробы с неподвижной фазой нередко остается неизвестным непосредственным исполнителям анализа, что не мешает им получать точные результаты. Теоретические аспекты разделения веществ являются общими для всех видов хроматографии. Вид и способы обработки хроматограмм, практические приемы проведения качественного и количественного анализа, а иногда и используемая в ходе анализа аппаратура зачастую тоже не зависят от механизма разделения компонентов. Знать его надо в основном для разработки новых и оптимизации известных методик анализа.

7.6. Жидкостная хроматография. Методы ВЭЖХ, ИОХ и ТСХ

Знакомство с отдельными методами хроматографического анализа логично начать с жидкостной хроматографии (ЖХ), так как этот метод возник первым.

Сорбенты. В жидкостной хроматографии неподвижную фазу образуют мелкодисперсные частицы твердых сорбентов – оксида алюминия, силикагеля, алюмосиликатов, угля, сажи, мела, талька. Используют также природные (целлюлоза, крахмал) или, чаще, специально синтезированные полимерные сорбционные материалы (тефлон и др.). Размер частиц сорбента не превышает 1 мм, часто используют порошки с еще меньшим размером частиц (десятки микрометров). Для эффективного разделения компонентов смеси надо, чтобы все частицы были приблизительно одинакового размера. Это достигается с помощью многократного просеивания сорбента через сита с разным размером отверстий. Разделение веществ в ЖХ чаще всего происходит по адсорбционному механизму, в этом случае сор-

472

бенты называют адсорбентами. Удельная поверхность адсорбентов должна быть не меньше 50 м2/г.

Адсорбция молекул или ионов из раствора идет не на всей поверхности твердой частицы, а только на определенных активных центрах этой поверхности. Так, на поверхности оксида алюминия существуют по меньшей мере три вида активных центров (кислотные, основные и т. п.), адсорбирующих из раствора молекулы разного типа. Примером кислотных центров могут быть группы Si-O-H на поверхности силикагеля. В зависимости от способа приготовления и подготовки адсорбента (например, от способа его промывки реагентами, от температуры и продолжительности прокаливания и т. п.) можно получить адсорбент с преобладанием тех или иных центров, с меньшим или большим числом центров на единице поверхности. Такими способами можно получать адсорбенты с заданными свойствами.

Для разделения малополярных органических молекул преимущественно используют полярные адсорбенты типа силикагеля и оксида алюминия, а в качестве элюентов применяют органические растворители (углеводороды, спирты, эфиры). Для разделения ионов и сильнополярных органических молекул используют совсем другие фазы. В качестве неподвижной фазы берут неполярные вещества (крахмал, целлюлоза и т. п.), подвижной фазой могут быть: вода, водные растворы кислот, солей или щелочей, водно-спиртовые или водно-ацетоновые растворы. Такой вариант анализа называют обра- щенно-фазовой хроматографией.

Изотермы сорбции. При контакте сорбента с раствором, содержащим растворенное вещество Х, устанавливается равновесие. Его основной характеристикой является изотерма сорбции – полученная при некоторой постоянной температуре (например, при комнатной) зависимость параметра a (количества вещества, сорбированного одним граммом сорбента) от начальной концентрации Х в растворе (С, моль/л). Если поглощение Х идет по адсорбционному механизму, такую зависимость называют изотермой адсорбции. При низких концентрациях Х изотерма адсорбции прямолинейна, затем ее наклон, как правило, уменьшается1. Это объясняется ограниченностью числа активных центров: по мере их заполнения частицами Х

1 Соответствующая математическая зависимость может быть передана одной из известных формул (Фрейндлиха, Лэнгмюра и т. п.), детально рассматриваемых в курсах физической и коллоидной химии.

473

дальнейшая адсорбция снижается или полностью прекращается. Угловой коэффициент изотермы адсорбции равен коэффициенту распределения Х между фазами. Его называют коэффициентом Генри и обозначают символом Г. Обычно так же называют коэффициент распределения и при других механизмах сорбции, хотя это не совсем правильно.

Когда в растворе есть несколько разных растворенных веществ (например, X1 и X2 ), их изотермы адсорбции, как правило, различаются по наклону линейного участка (Г1 ≠ Г 2 ). В таких случаях компоненты смеси X1 и X2 могут быть хроматографически разделены. Если же для данной системы сорбент–растворитель вещества X1 и X2 имеют одинаковые изотермы адсорбции, разделение X1 и X2 невозможно.

Для получения хорошо воспроизводимых хроматограмм с отчетливо выраженными симметричными пиками и, соответственно, для успешного разделения иследуемых смесей хроматографисты стремятся работать в области низких концентраций, обеспечивающих постоянные значения коэффициентов распределения (на прямолинейных участках изотерм адсорбции). Поэтому для проведения хроматографического анализа стараются взять как можно меньшую массу и объем пробы. Ограничением является лишь необходимость достоверно зарегистрировать сигнал каждого компонента, выходящего из хроматографической колонки.

Иногда изотермы сорбции имеют выпуклую или вогнутую форму даже в области очень низких концентраций. Нелинейность изотерм приводит к искажению формы пиков на хроматограмме, они становятся несимметричными. Искажение затрудняет определение площади пика (по ней рассчитывают результат анализа). При несимметричной форме хроматографического пика с растянутым влево или вправо контуром больше вероятность наложения пиков разных компонентов пробы друг на друга. Непредсказуемость формы изотерм адсорбции и нередкая зависимость коэффициентов распределения от концентрации Х

– существенные недостатки жидкостной адсорбционной хроматографии по сравнению с распределительной (газожидкостной).

Метод ВЭЖХ. Ионная хроматография. Классическая ад-

сорбционная жидкостная хроматография (метод Цвета) до сих пор применяется во многих аналитических лабораториях. В этом случае мелкодисперсный сорбент загружают в колонку высотой 1–2 м, вносят в верхнюю часть колонки пробу и медленно промывают колонку

474

подходящим элюентом. Состав элюента может быть неизменным, но нередко колонку промывают сначала одним элюентом, затем другим и т. д. На выходе из колонки периодически контролируют состав элюата, измеряя показатель преломления (nd) или другое свойство раствора. В отдельные приемники собирают фракции с разными значениями nd. Так можно разделить какой-либо нефтепродукт, выделяя сумму предельных (парафиновых) углеводородов, легкие, средние и тяжелые ароматические углеводороды и т. п.

Классический вариант ЖХ длителен, трудоемок и далеко не всегда обеспечивает полное разделение компонентов. Качество разделения улучшается при уменьшении размера частиц. Поэтому на смену классическому варианту ЖХ в 70-е гг. XX века пришел метод, в котором применяют сорбенты с гораздо меньшим размером частиц (5– 10 мкм) и сравнительно небольшими колонками (длина 10–30 см, диаметр порядка 5 мм). В лабораториях используют готовые, серийно выпускаемые колонки. Они могут содержать как обычные сорбенты для адсорбционной хроматографии, так и сорбенты с модифицированной поверхностью. Например, на поверхность сорбента можно заранее нанести тончайший слой вязкой неподвижной жидкой фазы или к поверхности сорбента привить с помощью мощного радиоактивного излучения какие-либо крупные органические молекулы. Оба приема превращают адсорбционный механизм разделения в распределительный, что существенно улучшает качество разделения компонентов пробы. В колонку можно поместить и мелкозернистый катионит или анионит, такие колонки используют в ионообменной хроматографии.

Поскольку гидравлическое сопротивление колонки с мельчайшими частицами сорбента очень велико, для ускорения анализа элюент нагнетают в колонку под большим давлением, в 100–400 раз выше атмосферного. Для проведения анализа потребуется специальный прибор – жидкостной хроматограф (рис. 7.5), снабженный мощным насосом и детектором, непрерывно измеряющим свойства элюата.

Такой вариант анализа получил название: жидкостная хрома-

тография высокого давления (ЖХВД) или высокоэффективная жидкостная хроматография (ВЭЖХ).

Пробу в жидкостной хроматограф вводят с помощью специальных кранов-дозаторов. Соединительные трубки и сами колонки выполняют из прочных, химически инертных материалов. Очень важно обеспечить герметическое соединение разных узлов жидкостного хроматографа, которое должно выдержать высокое давление. Иногда со-

475

став элюента меняют непрерывно (градиентное элюирование), смешивая в переменном соотношении 2–3 растворителя по заранее заданной программе. Такой прием позволяет полностью вымывать из колонки все компоненты пробы и получать на одной и той же хроматограмме пики соединений, сильно различающихся по растворимости (например, растворимых только в воде и растворимых только в ацетоне).

 

 

 

 

элюент

Насос

2

3

 

проба

Детектор

4

5

Рис. 7.5. Принципиальная схема хроматографа для ВЭЖХ:

1А и 1Б – резервуары для растворителей; 2 – смеситель для градиентного элюирования; 3 – кран-дозатор; 4 – термостат с колонкой;

5 – устройство для сбора фракций

Жидкостные хроматографы оснащают фотометрическими, флуориметрическими, кондуктометрическими или рефрактометрическими детекторами. Контролируя оптическую плотность элюата или интенсивность люминесценции на определенных длинах волн, можно зафиксировать выход некоторых компонентов пробы и рассчитать их содержание, не фиксируя сигналы других компонентов. Кондуктометрические и особенно рефрактометрические детекторы менее избирательны, с их помощью можно выявить все компоненты пробы. Для записи хроматограмм и их обработки, вплоть до расчета концентрации всех компонентов, в настоящее время используют компьютерную технику.

Приборы для ионообменной хроматографии устроены не-

сколько сложнее, чем другие жидкостные хроматографы. Как правило, детектором в этих приборах служит чувствительный кондуктометр. Кроме узлов, показанных на рис. 7.5, в ионных хроматографах между основной (разделительной) колонкой и детектором установле-

476

ны дополнительные ионообменные колонки, подавляющие фоновую электропроводность элюата. Так, при анализе смеси катионов металлов разделительную колонку заполняют мелкодисперсным катионитом в Н-форме, а в качестве элюента используют разбавленные растворы НСl. Подавляющую колонку заполняют анионитом в ОНформе, в ней будут поглощаться Сl-ионы, а в элюат выделятся ОН-ионы, которые тут же соединятся с прошедшими через разделительную колонку Н-ионами. В результате перед детектором НСl «преобразуется» в воду, и фоновая электропроводность исчезнет. Напротив, вытесненные из разделительной колонки катионы металлов беспрепятственно пройдут через подавляющую колонку, поочередно пройдут через кондуктометрический детектор, создадут аналитические сигналы, а затем и пики на хроматограмме.

Современные жидкостные хроматографы обеспечивают высокую точность анализа (погрешность обычно не превышает 5 % отн.). Пределы обнаружения компонентов анализируемой смеси зависят от их природы и еще более от типа используемого детектора, они могут составлять 10–9 и даже 10–10 г. Однако столь высокая чувствительность и точность анализа требуются далеко не всегда. Вместе с тем дорогие и сложные жидкостные хроматографы доступны не всем аналитическим лабораториям. Очевидно, кроме метода ВЭЖХ, нужны другие, более простые и дешевые варианты жидкостной хроматографии, которые, тем не менее, позволят быстро разделить исследуемую смесь и опознать ее компоненты. Задача имеет два решения – это методы тонкослойной и бумажной хроматографии.

Тонкослойная хроматография. Метод был предложен в

1938 г. Н.И. Измайловым и М.С. Шрайбер. На плоскую пластинку, поверхность которой покрыта тонким (до 1 мм) слоем твердого мелкозернистого сорбента, наносят каплю разделяемой смеси (≈ 0,01 мл). Наиболее часто в качестве сорбента используют силикагель, оксид алюминия, целлюлозу, в качестве связующего иногда добавляют гипс или крахмал. В наиболее распространенном варианте ТСХ нижний край пластинки погружают в растворитель (элюент). За счет капиллярных сил элюент перемещается вверх по слою сорбента, увлекая за собой растворимые компоненты пробы. Чтобы элюент не испарялся с поверхности сорбента, пластинка на время разделения должна быть помещена в герметически закрытую прозрачную камеру.

Обычно каждую частицу сорбента покрывает очень тонкий слой воды, и компоненты пробы в соответствии с их растворимостью

477

многократно перераспределяются между органической ПФ и водой в неподвижной жидкой фазе (механизм распределительной хроматографии). Однако в ТСХ возможны и другие механизмы (адсорбционный, ионообменный, молекулярно-ситовый, смешанный и т. п.). Многократные акты сорбции и десорбции соответствующих молекул (или ионов) частицами сорбента приводят к тому, что компоненты пробы постепенно отстают от подвижной фазы, поднимающейся по слою сорбента. При правильном выборе ПФ и НФ, а также при достаточно малом объеме пробы каждый компонент движется в виде небольшой зоны («пятна»), и эти пятна не расплываются по поверхности сорбента. Когда фронт элюента приблизится к верхнему краю пластинки, ее вынимают из хроматографической камеры, высушивают и определяют положение пятен на хроматограмме (рис. 7.6). Если компоненты пробы не окрашены, хроматограмму проявляют, облучая УФ-светом, обрабатывая парами иода или другими реагентами.

А

 

 

Б

 

 

Стеклянная камера

1

2

3

4

5

 

 

 

 

 

 

Пластинка

 

 

 

 

 

с сорбентом

 

 

 

 

 

с элюентом

 

 

 

 

Рис. 7.6. Схема выполнения (А) и результат (Б) разделения смеси методом ТСХ. На стартовую линию были нанесены: предполагаемые компоненты пробы порознь (1–4) и сама проба (5), содержащая компоненты 1 и 3. Стрелкой показано направление движения элюента

Относительная скорость движения i-го компонента или его подвижность (Rf) равна:

Rf =

l x

,

(7.13)

l0

 

 

 

где lx – высота подъема пятна компонента; l0

– высота подъема

фронта растворителя за то же время. Для компонентов, нерастворимых в ПФ, Rf = 0, для несорбируемых компонентов Rf = 1, другие компоненты пробы дают значения Rf от 0 до 1.

478

Различие коэффициентов распределения разных компонентов приводит к неодинаковой подвижности этих компонентов и, следовательно, к их разделению. После проявления будет наблюдаться столько пятен, сколько компонентов с разными коэффициентами распределения изначально присутствовало в пробе.

Выбор растворителя для метода ТСХ определяется природой сорбента и свойствами предполагаемых компонентов пробы. Часто применяют смеси двух-трех растворителей. В частности, при опознании индивидуальных аминокислот в их смеси в качестве ПФ используют смесь уксусной кислоты, воды и н-бутанола.

Если разделения не произошло или нет гарантии, что разделились все компоненты пробы, надо использовать другой элюент. Удобно, в частности, повернуть уже проявленную пластинку на 900 и погрузить ее в новый растворитель. Этот вариант анализа называют двумерной тонкослойной хроматографией (рис. 7.7). Полезно также провести повторное разделение, нанеся новую порцию исследуемой пробы на пластинку с другим сорбентом.

А

 

Б

 

В

 

 

 

 

 

ПФ-1

ПФ-2

Рис. 7.7. Двумерная хроматография семикомпонентной смеси красителей по методу ТСХ: А — ввод пробы; Б — после обработки первым элюентом;

В— после обработки вторым элюентом. Указаны стартовые линии

илинии подъема фронта растворителя

Для идентификации компонентов в методе ТСХ пользуются следующими приемами.

1) Сравнение со свидетелями. В этом случае рядом с каплей пробы на стартовую линию наносят капли «свидетелей» – предполагаемых компонентов пробы (химически чистые индивидуальные вещества или их растворы в ПФ). Последующее совпадение по высоте подъема (а также по окраске) какого-либо пятна пробы и пятна свидетеля указывает на возможное присутствие соответствующего вещества в пробе, хотя и не гарантирует этого (разные вещества могут

479

иметь совпадающие окраски и совпадающие высоты подъема). Для подтверждения проверку проводят повторно, в новых условиях – с другими сорбентами, с другим растворителем. Случайное совпадение характеристик свидетеля и компонента пробы в нескольких системах маловероятно.

2)Сравнение с табличными данными. Величина Rf не зависит от размера пластинки, времени разделения и (при достаточно малой массе пробы) от концентрации компонента в пробе и присутствия других

компонентов. Таким образом, Rf – это идентификационная характеристика. Для часто применяемых систем ПФ–НФ подвижности индивидуальных веществ известны и собраны в таблицы. Сравнение с таб-

личными значениями Rf – удобный и быстрый метод идентификации, особенно если в лаборатории отсутствует нужный свидетель или вообще не ясно, какие свидетели использовать, поскольку неизвестен даже ориентировочный состав пробы. К сожалению, эксперименталь-

ные значения Rf недостаточно воспроизводимы, так как на Rf влияют толщина слоя, влажность и зернистость сорбента, а эти факторы при самостоятельном изготовлении пластинки трудно стандартизовать. Стандартные пластинки с тонким слоем сорбента, нанесенным на металлическую фольгу, выпускаются промышленностью и широко используются в лабораторной практике. Но даже при использовании та-

ких пластинок идентификация веществ по табличным значениям Rf менее надежна, чем идентификация с одновременным нанесением пробы и свидетеля на одну и ту же пластинку.

3)Обработка селективными реагентами. Окраска или свече-

ние пятен могут возникать или меняться при обработке хроматограммы реагентами. Так, некоторые углеводы и аминокислоты име-

ют совпадающие значения Rf , но при опрыскивании хроматограммы нингидрином пятна аминокислот синеют, а углеводы с этим веществом не реагируют.

4)Спектрофотометрическая идентификация. Сорбент в со-

ответствующей зоне аккуратно снимают с пластинки и переносят в сосуд, где обрабатывают растворителем. Затем раствор с извлеченным компонентом отфильтровывают и регистрируют его спектр, например, спектр поглощения в УФ-области против чистого растворителя. По спектру судят о химической природе компонента. В отдельных случаях регистрируют спектр отражения или спектр флуоресценции самого пятна. Эти же приемы используют и для количественного анализа.

480