Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1 курс / Химия / Uchebnik_Osnovy_analiticheskoy_khimii

.pdf
Скачиваний:
31
Добавлен:
23.03.2024
Размер:
5.83 Mб
Скачать

нейной, а скорость установления межфазного равновесия – бесконечно большой. Позднее были созданы более сложные модели нелинейной равновесной и, наоборот, линейной неравновесной хроматографии. Они позволяли прогнозировать, какие смеси можно, а какие нельзя разделить в заданных условиях. Если теория правильно описывает реальный процесс в хроматографической колонке, то на ее основе можно математически рассчитать и построить модельные хроматограммы, которые идеально совпадут с реальными. Во многих работах такое совпадение действительно достигнуто.

Для моделирования хроматограмм исследователь должен заранее определить, каким будет механизм разделения компонентов смеси (адсорбционный, распределительный, молекулярно-ситовый и т. п.). Моделирование хроматограмм опирается на известные закономерности химических и фазовых равновесий, теорию скоростей химических реакций, законы диффузии и т. п. На основе выбранной модели составляют системы алгебраических или дифференциальных уравнений, а затем решают их – в общем виде или с применением компьютерной техники. Многократно повторяя такие расчеты в ходе компьютерных экспериментов, исследуют, как влияют разные факторы на вид хроматограмм. Это позволяет делать важные практические рекомендации.

Теория хроматографического процесса должна помочь аналитикампрактикам ответить на ряд важных вопросов, в частности:

какой длины должна быть хроматографическая колонка и насколько должны различаться свойства компонентов смеси, чтобы в колонке произошло их полное разделение?

почему на хроматограмме часто получаются широкие расплывчатые пики? Как предотвратить это явление?

какой должна быть температура колонки и состав неподвижной фазы, чтобы как можно лучше и вместе с тем как можно быстрее разделить смесь заданного состава?

Ответ на первый из этих вопросов был получен еще Мартином и Синджем, создавшим в 40-х гг. ХХ века так называемую «теорию тарелок». Ответом на второй вопрос стала кинетическая теория хроматографического процесса, разработанная в 50-х гг. Ван-Деемтером и его соавторами. Полный ответ на третий вопрос до сих пор не получен, хотя в этой области проведено много глубоких теоретических исследований, выявлены важные закономерности и сделан ряд практических рекомендаций.

Теория тарелок. Основная идея этой теории заключается в том, что

всю хроматографическую колонку по ее длине можно мысленно разбить на ряд небольших участков («тарелок»1), на каждом из которых успевает уста-

1Это название объясняется глубокой аналогией хроматографического разделения с процессом ректификации смесей в ректификационных колоннах, имеющих множество сборников жидкости тарельчатой формы.

501

новиться межфазное равновесие. В соответствии с заранее известным коэффициентом распределения (коэффициентом Генри) часть вещества Х (компонента пробы, сорбата) на первой тарелке переходит в НФ, а часть остается в ПФ. В следующий момент ПФ продвигается далее по колонке – на вторую тарелку, где поглощается часть Х, оставшегося в подвижной фазе. На первой же тарелке часть ранее поглощенного Х извлекается поступающим туда чистым элюентом. Эти процессы многократно повторяются, что и ведет к формированию в колонке зоны Х, занимающей не одну, а несколько десятков тарелок. Распределение Х внутри зоны соответствует закону нормального распределения. Это объясняет форму пика Х на внешней хроматограмме. Решение соответствующих уравнений показывает, что зона Х должна двигаться по колонке с постоянной скоростью w, меньшей, чем скорость движения подвижной фазы (u). Теория тарелок является универсальной, но конечные формулы, описывающие скорость движения компонентов, несколько различаются для разных вариантов хроматографии. Для газожидкостной (распределительной) хроматографии скорость движения компонента Х через колонку определяется следующим уравнением:

w

U

,

(7.22)

 

VГ D VНЖФ

 

 

где VГ – объем газовой фазы в колонке; VНЖФ – объем НЖФ в колонке при данной температуре; D – коэффициент распределения. Формула (7.22) похожа на формулу (7.7), связывающую коэффициент распределения со степенью извлечения Х при экстракции. Это не случайно – распределительная хроматография сродни экстракции, а замедление движения компонента Х определяется именно степенью его извлечения неподвижной жидкой фазой.

В газоадсорбционной хроматографии зависимость скорости перемещения зоны от разных факторов определяется уравнением (7.11), аналогичным уравнению (7.22). Подобные уравнения можно вывести и для других видов хроматографии, но они будут реально выполняться, если изотермы сорбции линейны, а разделение идет в равновесных условиях.

Продолжим рассмотрение хроматографического процесса в рамках теории тарелок на примере метода ГЖХ. Допустим, что длина колонки равна l см, высота, эквивалентная одной теоретической тарелки (ВЭТТ) для вещества Х, равна h см, а молекула Х за время своего пути в колонке в среднем N раз поглощается неподвижной фазой и десорбируется с нее, т. е. N – число теоретических тарелок для этой колонки. Тогда для Х величина ВЭТТ равна:

h =

l

.

(7.23)

 

 

N

 

Для реальных насадочных колонок величина h обычно составляет около 0,1 см. Это означает, что 5-метровая насадочная колонка имеет поряд-

502

ка 5 · 103 тарелок. Более точно число тарелок можно определить непосредственно по хроматограмме, полученной на соответствующей колонке. Как показали Мартин и Синдж, величину N можно оценить, сопоставляя ширину пика на хроматограмме с его временем удерживания (в одних и тех же единицах):

t

R

2

 

t

R

2

 

N 16

 

 

5,545

 

.

(7.24)

 

 

 

 

 

 

 

 

0,5

 

 

 

 

 

 

 

Теория тарелок не рассматривает вопрос, какие факторы и как именно влияют на ВЭТТ (этот вопрос рассматривается в рамках кинетической теории Ван-Деемтера).

Для разных компонентов пробы значения ВЭТТ и, соответственно, число тарелок для одной и той же колонки должны различаться между собой, однако для однотипных соединений (например, для ряда гомологов) число тарелок приблизительно одинаково. Это объясняет, почему на хроматограмме смеси гомологов при изотермическом режиме разделения ширина каждого следующего пика несколько больше, чем предыдущего, а последние пики сильно расплываются (см. рис. 7.9).

Зная коэффициенты распределения, можно рассчитать характеристики удерживания соответствующих веществ. Из (7.22) следует, что для вещества Х1:

tR1

 

l

 

l (VГ Г1 VНЖФ )

.

(7.25)

w1

u

 

 

 

 

 

Аналогичным образом

рассчитывается tR2

– время

удерживания

другого (стандартного) вещества Х2. Теперь можно найти их отношение, т. е. относительное время удерживания Х1:

tR отн

tR1

 

VГ Г1

VНЖФ

.

(7.26)

tR2

VГ Г2

 

 

 

VНЖФ

 

Выведенная формула объясняет, почему относительные характеристики удерживания не зависят от скорости движения газа-носителя.

Разрешение соседних пиков на хроматограмме (величину RS) мож-

но не только оценить по уже полученной хроматограмме (см. формулу 7.17), но и прогнозировать заранее, до ввода пробы в хроматограф. Для метода ГЖХ теория тарелок приводит к простой формуле:

 

Г2

Г1

 

 

 

 

 

N

,

 

RS = 0,424

N = 0,212 ∆Г

 

 

(7.27)

Г

2

Г

Г

 

 

 

 

 

ср

 

 

 

1

 

 

 

 

 

 

где ∆Г = Г2 – Г1, а N – среднее число тарелок для близких по свойствам веществ Х2 и Х1.

503

Пример 7.5. Можно ли разделить с помощью 10-метровой колонки два вещества, у которых значения коэффициентов Генри отличаются на 1 %? Высота ВЭТТ для обоих веществ равна 0,1 см. Может быть, следует изменить длину колонки?

Решение. Из (7.23) следует, что для обоих веществ колонка имеет по 104 тарелок. По условию отношение ∆Г к Гср равно 1 %, т. е. 0,01. Подстановка в (7.27) приводит к значению RS , равному 0,212, что указывает на сильное наложение пиков. По-видимому, длину колонки надо увеличить. Если, например, взять 400-метровую капиллярную колонку, то при той же величине

ВЭТТ она будет иметь N = 4 · 105 тарелок. В этом случае N = 633. Тогда RS

= 1,34. Полученное значение указывает на хорошее разрешение пиков, обеспечивающее точные результаты хроматографического анализа. Отметим, что для достижения хорошего разрешения потребовалось увеличить длину колонки в 40 раз!

В формуле (7.27) можно выделить два фактора, влияющих на разре-

шение соседних пиков. Первый множитель –

Г2

Г1

– характеризует се-

Г2

Г1

 

 

лективность колонки по отношению к разделяемым компонентам, его иногда называют коэффициентом хроматографической селективности. Второй

множитель ( N ) характеризует эффективность колонки, которую опреде-

ляет число теоретических тарелок. На рис. 7.11 показано, какой вид может иметь хроматограмма двухкомпонентной смеси при разной эффективности и селективности колонки.

Широкие размытые пики на реальной хроматограмме указывают на низкую эффективность колонки. В таких случаях проще всего перейти к использованию более длинной колонки с той же НЖФ (как в примере 7.5). Однако пропорционально длине колонки будет возрастать время, затрачиваемое на анализ. Поэтому можно попытаться увеличить N другим способом

– уменьшая высоту теоретической тарелки (hВЭТТ). Кинетическая теория хроматографического разделения, излагаемая в специальной литературе, доказывает, что ВЭТТ сложным образом зависит от скорости газа-носителя, относительного содержания НЖФ в сорбенте и от температуры колонки. Поэтому улучшить эффективность колонки при той же ее длине можно, подбирая оптимальные значения каждого из этих факторов. Так, высота теоретической тарелки в методе ГЖХ минимальна при определенной скорости движения газа-носителя. Минимальное значение ВЭТТ для колонки заданной длины приведет к ее максимальной эффективности, а следовательно, к оптимальному режиму разделения.

504

I

a

t

I

б

t

I

в

t

Рис. 7.11. Вид хроматограммы смеси при разной селективности

иэффективности колонки:

а– высокая селективность, низкая эффективность; б – низкая селективность, высокая эффективность;

в– высокая селективность, высокая эффективность

Если на реальной хроматограмме узкие пики разных компонентов оказались слишком близки друг к другу (низкая селективность колонки), лучше всего перейти к другой НЖФ. Было бы правильно выбирать подходящую НЖФ, сопоставляя коэффициенты Генри разделяемых компонентов на разных фазах, с учетом предполагаемой температуры разделения. К сожалению, значения коэффициентов Генри известны лишь для некоторых НЖФ и лишь для немногих разделяемых соединений, а рассчитывать эти коэффициенты теоретическим путем, исходя из структуры компонентов, пока не удается. Поэтому при выборе НЖФ учитывают другие характеристики разделяемых соединений. Так, на некоторых НЖФ разделяются вещества, которые различаются по температуре кипения. Каждый следующий пик на хроматограмме соответствует веществу с большей температурой кипения. Другие факторы (строение молекулы, наличие тех или иных функциональных групп в структуре молекулы и т. п.) оказываются слабо влияющими на возможность разделения и на положение соответствующих пиков.

505

Существуют также неподвижные фазы иного типа, избирательно растворяющие компоненты пробы, относящиеся к определенным классам соединений. Температура кипения компонентов смеси при этом играет второстепенную роль. Примером фаз первого типа является сквалан, второго – дициандиэтиловый эфир. Если делить углеводородные смеси на сквалане, то пик бензола (tкип = 80 °С) в строгом соответствии с температурами кипения компонентов смеси появляется между пиками н-гексана (tкип = 68 °С) и н-гептана (tкип = 98 °С). Однако из колонки с дициандиэтиловым эфиром пик бензола появляется после пика додекана, имеющего tкип = 216 °С. Причиной является гораздо лучшая растворимость в этом эфире предельных углеводородов по сравнению с ароматическими.

Еще более избирательны неподвижные фазы, являющиеся жидкими кристаллами. Они сильно удерживают молекулы линейной структуры, но почти не растворяют вещества с разветвленной структурой молекул. Это свойство используется для разделения изомеров с одинаковым набором функциональных групп и одинаковой температурой кипения. На жидких кристаллах делят даже стереоизомеры, например, левовращающие и правовращающие аминокислоты, что является труднейшей задачей. К сожалению, необходимые для этого неподвижные жидкие фазы находят преимущественно эмпирическим путем. Актуальной задачей в области теории хроматографического анализа сегодня представляется создание моделей, которые позволили бы предсказывать значения коэффициента Генри для произвольной системы сорбат-сорбент с учетом структуры соответствующих молекул, а также прогнозировать изменение этих коэффициентов в зависимости от температуры.

Контрольные вопросы

1.Почему в ходе анализа приходится разделять и концентрировать компоненты пробы? В каких случаях можно было бы обойтись без соответствующих методов? Почему методы, направленные на достижение разных целей, рассматриваются вместе, что у них общего?

2.Какие существуют методы разделения и концентрирования, как их можно систематизировать? Укажите методы, которые преимущественно направлены на разделение компонентов пробы, а также те, которые направлены на абсолютное или относительное концентрирование микропримесей.

3.Дайте определения понятий «коэффициент распределения», «константа распределения», «коэффициент концентрирования», «коэффициент разделения». Как связаны друг с другом эти характеристики?

506

От каких параметров они еще зависят? Почему, подбирая условия проведения анализа, следует стремиться к повышению этих характеристик?

4.Что такое степень извлечения, от каких факторов она зависит при проведении однократной экстракции? Как можно добиться полноты экстракционного извлечения некоторого компонента пробы? Как можно добиться сильного концентрирования экстрагируемой микропримеси? Возможно ли выполнить эти два требования одновременно и если да, то как?

5.Почему коэффициент распределения экстрагируемого компонента между двумя фазами во многих случаях зависит от рН? Как определить оптимальное значение рН для его экстракции?

6.За три экстракции удалось извлечь 80 % некоторого компонента пробы. Сколько таких экстракций еще потребуется, чтобы извлечь 99 % этого компонента? В каких случаях подобные прогнозы будут ошибочны?

7.Как можно анализировать экстракты и в каких случаях проводят реэкстракцию определяемого компонента пробы?

8.Приведите примеры процессов анионного и катионного обмена на синтетических ионитах. От каких факторов зависит равновесие ионного обмена и как оценить обменную емкость ионита?

9.Приведите конкретные примеры применения ионитов (например, при разделении микропримесей, при удалении веществ, мешающих анализу, и т. п.).

10.Как с помощью катионообменной колонки определить суммарную концентрацию солей в некотором растворе (минерализацию природной воды)? Как использовать ту же колонку для приготовления стандартного раствора HCl?

11.Используя дополнительную литературу, ознакомьтесь с устройством ионного хроматографа и аналитическими возможностями соответствующего метода анализа.

12.Какие общие признаки объединяют все хроматографические методы? Как их классифицировать? С какой целью применяют хроматографические методы в аналитических лабораториях?

13.Почему в опытах Цвета разные фракции хлорофилла разделялись при их продвижении через колонку с твердым сорбентом?

507

14.Почему именно М.С. Цвет считается основателем хроматографического анализа – ведь разделение компонентов смеси при их движении через неподвижную фазу химики наблюдали и до Цвета?

15.Какие преимущества имеет распределительная хроматография по сравнению с адсорбционной? В каких случаях применяют тот и другой вариант хроматографического анализа?

16.Как определить, какому компоненту принадлежит то или иное пятно на проявленной хроматограмме в методе ТСХ? Можно ли использовать метод ТСХ для количественного анализа?

17.Сопоставьте устройство газового и жидкостного хроматографов. Найдите сходство и различия. Какие детекторы используются в том

идругом случаях? Сопоставьте аналитические возможности и области применения методов ГЖХ и ВЭЖХ.

18.Как по хроматограмме определить характеристики удерживания некоторого вещества и как по этим характеристикам определить, что это за вещество? Как дополнительно повысить надежность опознания веществ по характеристикам удерживания?

19.Как рассчитать содержание компонентов смеси по ранее полученной хроматограмме? Обязательны ли для этого какие-либо эталоны? В каких случаях метод внутренней нормировки дает ошибочные результаты? Какие вообще могут быть причины получения неверных результатов (систематически завышенных и систематически заниженных) в хроматографическом анализе?

508

Глава 8 АНАЛИЗ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ

И НЕКОТОРЫХ ДРУГИХ ОБЪЕКТОВ*

Объекты, с которыми сталкиваются специалисты-аналитики, весьма разнообразны. Их можно классифицировать по многим признакам. Проще всего выделять объекты анализа не по их составу (его еще только предстоит определить!), а по происхождению. Выделяют, в частности, объекты окружающей среды, геологические объекты, объекты криминалистической экспертизы, пищевые продукты, нефтепродукты, лекарственные препараты и некоторые другие объекты. Каждая группа объектов тесно связана с какойлибо областью человеческой деятельности. Научные исследования в области органической химии требуют выяснения состава и структуры множества природных и синтетических веществ. Медицинские исследования и практика здравоохранения формируют свой перечень объектов (кровь, слюна, выдыхаемый воздух и т. п.). В каждой отрасли промышленности также сложился собственный список объектов анализа и показателей их состава.

Рассказать подробно о том, как анализируют объекты каждого типа, в рамках одной книги невозможно. Далее будет кратко рассказано об анализе объектов трех типов. В качестве примера неорганических объектов взяты геологические материалы (например, руды металлов), а также металлы и их сплавы (раздел 8.1). С использования металлов когда-то началось развитие цивилизации (переход человечества из каменного века в «бронзовый» и «железный»), а с исследования состава руд и металлов – развитие химического анализа.

Примером обширной группы органических объектов анализа могут быть индивидуальные органические соединения, продукты тонкого лабораторного синтеза (раздел 8.2). Результаты их анализа позволили в конце XIX века установить строение молекул и создать теорию химических реакций, т. е. легли в основу современной химической науки.

Исключительную значимость в конце XX века приобрел анализ объектов окружающей среды и основанный на результатах такого анализа экологический мониторинг. Анализ объектов окружающей среды будет рассмотрен более подробно (разделы 8.3–8.6).

509

8.1. Анализ геологических объектов и металлов

Геологические объекты. К этой группе относят горные породы, разные руды и минералы, нерудные полезные ископаемые (например, различные соли и др.). Результаты анализа таких объектов необходимы геологической службе и отраслям промышленности, потребляющим минеральное сырье, – черной и цветной металлургии, промышленности строительных материалов. Результатом химического анализа геологических объектов стало открытие многих месторождений полезных ископаемых.

При анализе геологических объектов основное значение имеет элементный анализ. Определяют содержание макро- и микрокомпонентов. Микрокомпонентами обычно считают элементы, содержание которых не превышает 0,01 %. Разнообразие состава геологических объектов требует создания множества стандартных образцов с известным содержанием макро- и микрокомпонентов.

Анализ нерастворимых в воде минералов в течение долгого времени вели, сплавляя их с щелочами, содой или другими веществами, а затем растворяя полученную смесь в кислотах. Отдельные макро- и микрокомпоненты пробы затем определяли в растворе методами гравиметрии, титриметрии, фотометрии. Соответствующие методики были исключительно трудоемкими и длительными. Иногда анализ одной пробы требовал нескольких недель напряженной работы. В настоящее время макрокомпоненты в геологических материалах обычно определяют без перевода пробы в раствор, например рентгенофлуоресцентным методом.

Более сложной задачей является определение микропримесей. Ее также старались решить без растворения пробы, используя, например, методы атомно-эмиссионного спектрального анализа с дуговым возбуждением. При этом одновременно определяли множество индивидуальных компонентов пробы. В анализе минерального сырья в конце XX века получили распространение ядерно-физические методы. Так, уран, торий и калий обычно определяют по радиоактивности, бериллий – фотонейтронным методом, золото и серебро – гамма-активационным методом, олово – методом резонансной спектроскопии.

При анализе геологических объектов важно не только определение общего содержания элементов. Необходимо знать, в какой форме они присутствуют (вещественный анализ), какие фазы образуют (фазовый анализ). Это важно для разработки оптимальной технологии переработки минерального сырья. Вещественный и фазовый анализ геологических объектов, как и элементный анализ, в настоящее время проводят физическими методами, прежде всего рентгеноспектральными. Отметим, что в области анализа минерального сырья и других геологических объектов в нашей стране работали крупнейшие специалисты-аналитики, в частности акад. И.П. Алимарин и проф. А.К. Русанов. Под их руководством были созданы экспрессные и точные «инструмен-

510