Добавил:
kiopkiopkiop18@yandex.ru t.me/Prokururor I Вовсе не секретарь, но почту проверяю I steamcommunity.com/id/89885646844 Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1 курс / Химия / Uchebnik_Osnovy_analiticheskoy_khimii

.pdf
Скачиваний:
69
Добавлен:
23.03.2024
Размер:
5.83 Mб
Скачать

Существуют разные способы оценки вероятности этих ошибок. Например, можно провести каким-либо способом качественный анализ большой серии образцов известного состава, а потом подсчитать частоту появления ошибок того и другого типа. Вероятность таких ошибок зависит от множества факторов, в частности, от состава пробы и природы опознаваемого компонента. Но наиболее важна точность измерения идентификационных характеристик. Снижение точности измерений всегда приводит к увеличению вероятности идентификационных ошибок, к снижению достоверности результатов качественного анализа.

Анализ неизвестного вещества. Самая сложная задача каче-

ственного анализа – установление полного качественного состава пробы неизвестного состава (возможно, сложной смеси множества веществ), когда никакой априорной информации о ее возможном составе нет. Подобные задачи встречаются в практике довольно редко, например, в криминалистике или в космохимии. Полный качественный анализ пробы сложного состава представляет собой длительное и трудоемкое исследование, которое нельзя провести по каким-то стандартным методикам. Нетрудно установить элементный состав такой пробы, но выявить ее полный молекулярный состав без разделения компонентов удается далеко не всегда. Поэтому в ходе анализа неизвестного вещества обычно проводят последовательное фракционирование пробы, вплоть до полного разделения всех ее молекулярных компонентов. Только после разделения каждый из компонентов идентифицируют теми способами, которые были описаны в разделе «Опознание чистого вещества». Отдельные методы инструментального качественного анализа (спектральные, хроматографические и т. п.) рассмотрены в главах 6 и 7.

5.5. Количественный анализ с применением инструментальных методов

Любой физический или физико-химический метод количественного анализа предполагает проведение следующих операций.

1. Определение градуировочной функции (эту операцию часто называют градуировкой). Вид градуировочной функции известен из теории соответствующего метода. Примерами могут быть уравнение Фарадея (в кулонометрии), уравнение Нернста (в потенциометрии), закон Бугера–Ламберта–Бера (в спектрофотометрии). Рассчитывать

331

содержание аналита прямо по «теоретической» градуировке можно, но, как правило, этот способ приводит к неточным результатам. Поэтому градуировку проводят опытным путем, измеряя в выбранных условиях сигналы подходящих образцов сравнения (ОС). Затем возможны разные варианты действий: по полученным данным рассчитывают приближенные значения констант в уравнении I = f(Сх), или составляют пропорции, или строят градуировочный график на миллиметровой бумаге.

Очень часто градуировку ведут, настраивая перед началом анализа сам прибор так, чтобы он давал определенные показания, соответствующие содержанию Х в образцах сравнения. Например, вначале прибор настраивают так, чтобы при измерении сигнала образца, не содержащего Х, стрелка прибора указывала на нулевое деление. А затем регулируют коэффициент усиления аналитического сигнала, например, так, чтобы стрелка указывала на деление «100» при измерении сигнала образца, содержащего 0,1 % Х. Тогда вся шкала прибора будет соответствовать интервалу концентраций от 0 до 0,1 % Х. Конструкция современных измерительных приборов позволяет в широких пределах регулировать и положение нулевой точки, и чувствительность измерений, подгоняя его показания под заданную градуировочную функцию.

На практике нередко комбинируют разные способы градуировки. Например, вначале настраивают прибор по одному ОС, а затем, после дополнительных измерений целого ряда ОС, строят градуировочный график на бумаге.

2.Измерение аналитического сигнала. Измерение сигналов всех проб и всех образцов сравнения должно проводиться с помощью одной и той же аппаратуры, тем же исполнителем и в тех же условиях. Полезно провести несколько повторных измерений сигнала каждой пробы и в дальнейших расчетах использовать средние значения.

3.Расчет содержания Х ведут по величине аналитического сигнала, полученного для данной пробы. Выбирая тот или иной способ расчета, учитывают вид градуировочной функции, количество эталонов, которые использованы для градуировки, состав этих эталонов и требуемую точность анализа.

Способы измерения сигнала специфичны для каждого метода анализа и будут рассмотрены в главе 6. А вот способы градуировки и соответствующие им способы расчета содержания Х неспецифичны, одни и те же способы можно использовать практически во всех инструментальных методах.

332

Способ внешних стандартов. Самый простой и наиболее часто применяемый на практике способ градуировки – способ внешних стандартов. В этом случае надо иметь образцы сравнения с известным содержанием определяемого вещества. Образцы сравнения (эталоны) выбирают так, чтобы их состав был близок к предполагаемому составу пробы как по содержанию Х, так и по набору примесей. Содержания Х в разных эталонах одной и той же серии должны достоверно различаться. Лучше всего, если в качестве образцов сравнения применяют государственные стандартные образцы (ГСО) химического состава, о которых рассказывалось в главе 2.

Пример 5.2. В лаборатории планируют анализировать хромоникелевые стали на содержание марганца, причем ожидается, что содержание марганца во всех пробах будет порядка 0,2–0,5 %. Как провести градуировку?

Решение. Допустим, в лаборатории имеется четыре однотипных ГСО: хромоникелевые стали с известным содержанием марганца (0,10; 0,28; 0,47 и 0,95 %). Надо измерить аналитические сигналы этих образцов, построить градуировочный график и рассчитать его уравнение (градуировочную функцию). Все измерения необходимо проводить в одних и тех же оптимальных условиях, обеспечивающих наивысшую чувствительность и селективность, а также наилучшую сходимость результатов. В дальнейшем в тех же условиях измерять аналитические сигналы соответствующих проб. Подставляя их в ранее полученное уравнение, можно будет рассчитывать содержание Mn в исследуемых сталях. Описанная схема градуировки и расчета пригодна для любого метода определения марганца – атомно-эмиссионного, фотометрического, рентгено-флуорес- центного или потенциометрического. Различны были бы лишь уравнения, описывающие зависимость аналитического сигнала марганца от его содержания в стали.

Если градуировку ведут по внешним стандартам (как в примере 5.2), то можно применять несколько способов расчета результатов анализа:

сравнение с одним эталоном (использование пропорций);

сравнение с двумя эталонами (метод ограничивающих растворов);

сравнение со многими эталонами путем построения градуировочного графика;

333

сравнение со многими эталонами путем расчета уравнения градуировочного графика (например, по методу наименьших квадратов).

Расчет содержания с использованием единственного эталона

применяют, если непосредственно измеренный или исправленный аналитический сигнал прямо пропорционален концентрации Х, а фон отсутствует. Для градуировки нужен внешний стандарт известного состава. Если градуировочная функция имеет вид: I = KC, а условия измерения сигнала пробы и эталона одни и те же, тогда:

Iх = К Сх ;

Iос = K Cос ;

IX / IOC = CX / COC .

В этом случае конечная расчетная формула имеет вид:

С

 

 

Сос I x

.

(5.5)

x

 

 

 

I ос

 

 

 

 

 

Символами Сх и Сос обозначены содержания Х в пробе и в эталоне (образце сравнения), они могут быть выражены в любых единицах, но обязательно одних и тех же. Если в пробе содержатся примеси, отсутствующие в ОС и завышающие (или занижающие) аналитический сигнал Х, то простейшая формула (5.5) неприменима, ее использование приведет к систематическим погрешностям. Кроме того, расчет по формуле (5.5) очень чувствителен к случайным погрешностям измерений.

Расчет содержания Х с использованием двух внешних стан-

дартов имеет существенные преимущества по сравнению с предыдущим способом – он точнее и приемлем для более широкого круга методик. Исключать фон в этом случае не обязательно. Однако опасность неконтролируемого влияния примесей пробы остается и при использовании этого способа расчета. К тому же трудоемкость его выше, чем предыдущего.

При градуировке по двум образцам сравнения их подбирают так, чтобы один имел меньшую, а другой – большую концентрацию, чем исследуемая проба, т. е. С1 < CX < C2. В узком интервале концентраций (С1 ≈ C2) любую градуировочную функцию можно считать линейной, это не приведет к большим погрешностям расчета. Можно математически доказать, что в этом случае

СX = С1 +

I X

I1

C

 

C

.

(5.6)

 

 

2

 

I 2

I1

1

 

 

 

 

 

 

 

334

Формулу (5.6) применяют в методах пламенной фотометрии, рефрактометрии, спектрофотометрии, а также во многих других методах количественного анализа.

Расчет содержания Х по градуировочному графику. Построе-

ние градуировочного графика обычно требует множества внешних стандартов и занимает довольно много времени. Зато потом расчет содержания Х для каждой анализируемой пробы производится очень быстро. Поэтому в заводских и других контрольно-аналитических лабораториях градуировочные графики применяют очень широко, этот прием стал основным способом выполнения массовых анализов. Другое его преимущество – применимость в любых методах анализа, даже в тех, где градуировочные функции нелинейны и существует сильный фон. Использование большого числа правильно выбранных образцов сравнения ведет к уменьшению влияния случайных погрешностей.

Соответствующая градуировка требует нескольких образцов сравнения (обычно берут не менее 10 образцов). Они должны быть однотипными по своей природе и химическому составу, достоверно различаясь лишь по содержанию вещества Х. Совокупность образцов, используемых в ходе градуировки, должна закрывать весь интервал содержаний Х, которые могут встретиться в исследуемых пробах. Операции пробоподготовки, а также измерение сигнала для всех образцов проводят одними и теми же способами. Результаты измерений записывают в лабораторный журнал.

По полученным данным строят градуировочный график на миллиметровой бумаге. При этом откладывают значения I на вертикальной, а значения С – на горизонтальной оси. Однако на осях указывают не результаты измерений, а некоторые целочисленные значения I и С (обычно кратные 2, 5 или 10), в строго определенном масштабе. Иногда графики строят в других координатах, например логарифмических. Однако в любом случае каждому эталону соответствует своя пара значений I и C, а значит, своя точка на графике. График строят в виде прямой или плавной кривой, которые не обязательно должны проходить через все точки. Отклонения точек от графика должны быть как можно меньшими, причем число точек, отклоняющихся в ту и в другую сторону, должно быть приблизительно одинаковым. Для определения содержания Х в пробе находят на графике точку с ординатой, равной IX , и опускают из нее перпендикуляр на ось абсцисс.

335

В аналитических лабораториях каждый градуировочный график считают пригодным для использования лишь в течение определенного времени (месяца, года и т. п.). График приходится строить заново «досрочно», если методика анализа в чем-то меняется (новый прибор, новый исполнитель, заново приготовленные растворы) или начинают анализировать пробы другого типа.

Основной недостаток описанного способа связан с тем, что в лабораториях редко можно найти большое число однотипных эталонов с точно известным содержанием Х. Поэтому на практике график зачастую строят не по стандартным образцам, а по растворам, приготовленным самим аналитиком и содержащим разные известные количества химического реактива, включающего Х. Например, при определении марганца в хромоникелевых сталях пользуются графиком, полученным с помощью серии растворов MnSO4. Но пробы, в отличие от растворов, использованных для градуировки, содержат примеси (в данном случае – железо, хром и никель). Эти примеси могут повлиять на сигнал марганца, что приведет к систематическим погрешностям анализа.

Есть и еще одна проблема. Построение градуировочного графика – всегда субъективная процедура. Через один и тот же набор точек два исполнителя всегда проведут прямую (а тем более кривую) несколько по-разному, а потом получат разные значения СХ для одной и той же пробы. Поэтому в последние годы, по мере появления в лабораториях компьютеров и программируемых калькуляторов, построение графиков на бумаге все чаще заменяют расчетом уравнений, описывающих эти графики. В этом случае, получив с помощью n образцов сравнения n пар значений (С, I), находят ту математическую зависимость, которая наилучшим образом передает (аппроксимирует) действительную зависимость I от С. При этом стараются выбирать такие условия анализа или так преобразовать исходные значения I (или С), чтобы зависимость I = f(С) была линейной.

Расчет линейной градуировочной функции обычно проводят по методу наименьших квадратов (МНК). Рассчитывают коэффициенты в уравнении I = b0 + b1C с тем, чтобы сумма квадратов отклонений измеренных значений I от рассчитанных по уравнению для заданных значений С была минимальной. Суммирование ведут по n образцам,

т. е. по n точкам. Функция F = (Iэксп – Iрасчет )2 зависит от коэффициентов b0 и b1 в искомом уравнении градуировочной функции. Следо-

вательно, минимум функции достигается, когда ее частные произ-

336

водные по b0 и b1 равны нулю. Это условие приводит к удобным расчетным формулам:

b0 =

X 2 Y X XY

,

 

n X 2 ( X ) 2

 

 

 

 

 

n XY X Y

 

b1 =

 

.

 

n X 2 ( X ) 2

 

(5.7)

(5.8)

Здесь Х – содержание компонента Х в единичном эталоне; Y – измеренное (или преобразованное) значение сигнала этого эталона.

Пример 5.3. Измерили оптическую плотность (A) ряда растворов бензола в н-гексане. Известны значения концентрации бензола в каждом растворе, равные 2, 4, 6 и 8 10-5 моль/л, и соответствующие им значения оптической плотности (0,12; 0,20; 0,28; 0,40). Требуется рассчитать уравнение прямолинейного градуировочного графика и найти по нему концентрацию исследуемого раствора, в котором A = 0,34. Оптические плотности всех растворов измерены на одной длине волны и в одинаковых условиях, посторонние примеси отсутствуют.

Решение. Подстановка числовых значений в формулы (5.7–5.8) дает уравнение A = 0,02 + 4,6 · 103 C. Проверка показывает, что оно довольно хорошо соответствует экспериментальным данным. Так, подста-

новка С = 2 · 10–5 моль/л в найденное уравнение дает Aрасч = 0,11, тогда как Aэксп = 0,12. Это позволяет использовать найденное уравнение для

расчета результатов анализа. Подстановка A = 0,34 приводит к

C = (0,34 – 0,02) / 4,6 · 103 = 6,957 · 10–5 7,0 · 10–5 (моль/л).

Решать подобные задачи методом МНК лучше всего с помощью специальных компьютерных программ. Даже при малом опыте пользователя ввод исходных данных для решения вышеприведенного примера, расчет градуировочной функции и расчет с ее помощью концентрации исследуемого раствора суммарно занимают не более одной минуты. Метод МНК имеет ряд ограничений и не является единственно возможным способом расчета градуировочной функции. Условия применимости классического МНК, а также альтернативные способы расчета градуировочных функций описаны в дополнительной литературе.

Другие способы градуировки. Кроме основного способа гра-

дуировки – метода внешних стандартов – в инструментальных методах анализа нередко применяют другие – метод добавок, метод внут-

337

реннего стандарта и др., а также соответствующие им способы расчета результатов анализа. Основные преимущества этих способов: 1) лучше учитывается влияние примесей, входящих в состав пробы, что повышает точность результата анализа; 2) для градуировки не требуются труднодоступные и дорогие стандартные образцы, близкие по составу к анализируемой пробе. В частности, в методе добавок образцы сравнения готовят, добавляя к исследуемой пробе известные количества определяемого компонента в чистом виде.

Существуют и методы анализа, в которых градуировка вообще не проводится – это прежде всего инструментальные варианты титриметрии. В этих методах результат анализа рассчитывают не по значению аналитического сигнала, а по расходу титранта. Аналитический сигнал здесь измеряют только для того, чтобы выявить к.т.т. Погрешности измерения аналитического сигнала практически не влияют на результат анализа.

Метод добавок не требует внешних стандартов. В этом случае готовят две одинаковые пробы исследуемого вещества. Каждая из проб содержит неизвестное, но одинаковое количество Х. Обозначим начальную массу Х в каждой пробе символом m. В одну из проб дополнительно добавляют известную массу Х (mдоб), а в другую – ничего не добавляют. Проводят обе пробы через все стадии анализа и в одинаковых условиях измеряют аналитические сигналы (Ix+доб и Ix cоответственно). Обычный вариант расчета содержания Х по методу добавок предполагает, что сигнал прямо пропорционален содержанию Х, т. е. выполняется зависимость I = KC, фон отсутствует. Несложные математические преобразования в этом случае приводят к искомой формуле

mx mдоб

I x

I x .

(5.9)

I x доб

Если другие компоненты пробы в данных условиях не создают собственных сигналов, а только усиливают или ослабляют сигнал Х, это влияние будет приблизительно одинаковым для пробы с добавкой и для пробы без добавки. В таком случае применение метода добавок исключит или сильно уменьшит систематическую погрешность анализа. Метод добавок очень удобен для единичных анализов, надо только правильно выбрать массу добавки (так, чтобы сигнал в присутствии добавки усиливался в 1,5–2 раза). Вещество Х в добавке должно находиться в той же форме, что и в исходной пробе.

338

Существуют и другие, более сложные варианты метода добавок, которые обеспечивают большую точность за счет использования нескольких добавок разной величины, а также такие, которые применимы при нелинейной зависимости сигнала от концентрации.

Остальные методы градуировки и соответствующие им способы расчетов не имеют общего характера, применяются не во всех методах анализа (например, метод трех эталонов в спектральном анализе, метод внутренней нормировки в хроматографии и т. д.). Способы расчета результатов, специфические для отдельных методов анализа, в данной главе не рассматриваются.

5.6. Автоматизация анализа. Сенсоры*

Приборы. Развитие инструментальных методов количественного анализа означает, что время от времени появляются принципиально новые или более совершенные аналитические приборы. Наиболее важны приборы для измерения аналитического сигнала, но аналитикам нужны и другие – для пробоотбора, разложения пробы, разделения и концентрирования ее компонентов, а также вспомогательные приборы, например, дуговые и искровые генераторы в атомно-эмиссионном спектральном анализе. Первыми измерительными приборами, которые стали применять аналитики, были весы. В XIX веке были разработаны специальные приборы для оптических методов анализа: колориметры, спектроскопы и спектрографы. В XX веке появились рефрактометры и кондуктометры (20-е гг.), полярографы и масс-спектро- метры (20–30-е гг.), pH-метры (30-е гг.), УФ и ИК-спектрометры (40-е гг.), приборы для радиометрических измерений, для рентгеновской спектроскопии и многие другие. В 50–60-е гг. начался массовый выпуск хроматографов, атомно-абсорбционных спектрометров и газоанализаторов.

Появление новых приборов в аналитических лабораториях было прямым следствием создания новых аналитических методов. Однако приборы непрерывно совершенствуются даже в тех случаях, когда принцип аналитического метода десятилетиями не меняется. Современные приборы становятся все более точными, многофункциональными, миниатюрными. Однако сегодня основная тенденция развития аналитических приборов – это их ав-

томатизация.

Необходимость автоматизации связана с рядом причин. Прежде всего, она позволяет получить более точный результат анализа (устраняются персональные и уменьшаются оперативные погрешности), причем результат получают гораздо быстрее. В этом отношении большим достижением был переход к записи спектров и хроматограмм с помощью самописцев. Еще в 30-е гг. в лабораториях появились самописцы, встроенные в аналитические приборы, а также такие, которые можно было использовать в сочетании с

339

разными приборами, в разных методах анализа. Со временем автоматизированные приборы стали применять даже в классических методах анализа (титраторы, электронные весы и т. п.). Дальнейшие этапы автоматизации связаны с использованием микропроцессоров и компьютеров (конец XX века). Именно компьютер нередко управляет сложными аналитическими приборами.

Автоматизация возможна, а иногда и абсолютно необходима на всех стадиях анализа – не только при измерении аналитического сигнала, но и на стадии пробоотбора, при подготовке пробы к измерению, при расчете результата. Автоматизация важна по соображениям техники безопасности, особенно при работе с токсичными или радиоактивными объектами. Появление новых приборов позволяет уменьшить численность персонала лабораторий и, что важнее, изменить характер работы этого персонала. Можно исключить монотонное повторение рутинных операций. Однако полная автоматизация анализа целесообразна далеко не всегда. Она желательна при массовом анализе более или менее однотипных проб и едва ли оправдана при изучении состава единичных образцов. Следует учитывать экономические соображения.

Комплексная автоматизация анализа, по-видимому, началась с газообразных объектов. Теперь множество газоанализаторов непрерывно контролируют состав воздуха в шахтах, регистрируя содержание метана. Промышленные хроматографы контролируют технологические процессы в химической и нефтехимической промышленности. Автоматизированные приборные комплексы непрерывно определяют токсичные примеси в атмосферном воздухе (см. главу 8). Автоматизированные аналитические приборы находились на борту советских и американских космических кораблей, исследовали состав атмосферы других планет и передавали информацию на Землю.

Значительно труднее автоматизировать количественный анализ твердых и жидких проб, особенно при проведении анализов, включающих стадию пробоподготовки. Здесь успех был обеспечен созданием автоматизированных электронных весов, автосемплеров и приборов для проточного анализа. В конце XX века появились еще более совершенные устройства – лабораторные роботы.

Автосемплеры и анализаторы. Рассмотрим типичную проблемную ситуацию. В каждой крупной клинической лаборатории ежедневно анализируют несколько десятков (а то и сотен) однотипных проб крови и мочи на сахар. Анализы выполняются строго по стандартной методике, предусматривающей введение в пробу ряда реагентов и измерение оптической плотности полученного раствора (спектрофотометрия). Проводить ежедневно сотни подобных анализов вручную – утомительный, нетворческий труд, да и не всегда лаборант, работая вручную, может гарантировать требуемую точность результатов. А ведь промах при выполнении клинического анализа может привести к тяжелейшим последствиям для соответствующего больного.

340