
- •С.В. Свергузова, ж.А. Сапронова Введение в гидрологию
- •С.В. Свергузова, ж.А. Сапронова Введение в гидрологию
- •Оглавление
- •Предисловие
- •Введение
- •1. Общие сведения о воде и гидрологии
- •1.1. Вода в природе и жизни человека
- •1.2. Водные объекты. Понятие о гидросфере
- •1.3. Гидрологический режим и гидрологические процессы
- •1.4. Науки о природных водах
- •1.5. Методы гидрологических исследований
- •1.6. Использование природных вод и практическое значение гидрологии
- •Водопотребление в мире и некоторых странах
- •1.7. Водное законодательство в России
- •1.8. Практическое значение гидрологии
- •2. Химические и физические свойства природных вод
- •2.1. Вода как вещество, ее молекулярная структура и изотопный состав
- •2.2. Химические свойства воды. Вода как растворитель
- •2.3. Физические свойства воды
- •2.3.1. Агрегатные состояния воды и фазовые переходы
- •2.3.2. Плотность воды
- •2.3.3. Тепловые свойства воды
- •2.3.4. Некоторые другие физические свойства воды
- •3. Физические основы гидрологических процессов
- •3.1. Фундаментальные законы физики и их использование при изучении водных объектов
- •3.2. Водный баланс
- •3.3. Основные закономерности движения природных вод
- •3.3.1. Классификация видов движения воды
- •3.3.2. Расход, энергия, работа и мощность водных потоков
- •4. Круговорот воды в природе и водные ресурсы земли
- •4.1. Вода на земном шаре
- •4.2. Современные и ожидаемые изменения климата и гидросферы земли
- •4.3. Круговорот теплоты на земном шаре и роль в нем природных вод
- •4.4. Круговорот воды на земном шаре
- •4.5. Круговорот содержащихся в воде веществ
- •4.6. Влияние гидрологических процессов на природные условия
- •4.7. Водные ресурсы земного шара, частей света и России
- •5. Гидрология ледников
- •5.1. Происхождение ледников и их распространение на земном шаре
- •5.2. Типы ледников
- •5.3. Образование и строение ледников
- •5.4. Режим и движение ледников
- •5.5. Роль ледников в питании и режиме рек. Практическое значение горных ледников
- •6. Гидрология подземных вод
- •6.1. Происхождение подземных вод
- •6.2. Физические и водные свойства грунтов. Виды воды в порах грунтов
- •6.2.1. Физические свойства грунтов
- •Пористость грунтов.
- •6.2.2. Виды воды в порах грунта
- •6.2.3. Водные свойства грунтов
- •6.3. Классификация подземных вод. Типы подземных вод по характеру залегания
- •6.3.1. Классификации подземных вод
- •6.3.2. Воды зоны аэрации. Почвенные воды, верховодка, капиллярная зона
- •6.3.3. Воды зоны насыщения. Грунтовые воды
- •6.3.4. Артезианские и глубинные воды
- •6.4. Движение подземных вод
- •6.5. Водный баланс и режим подземных вод
- •6.6. Взаимодействие поверхностных и подземных вод. Роль подземных вод в питании рек. Некоторые природные проявления подземных вод
- •7. Гидрология рек
- •7.1. Реки и их распространение на земном шаре
- •Важнейшие реки Росии и зарубежного мира
- •7.2. Типы рек
- •7.3. Морфология и морфометрия реки и ее бассейна
- •7.3.1. Водосбор и бассейн реки
- •7.3.2. Морфометрические характеристики бассейна реки
- •7.3.3. Физико-географические и геологические характеристики бассейна реки
- •7.3.4. Река и речная сеть
- •7.3.5. Долина и русло реки
- •7.3.6. Продольный профиль реки
- •7.4. Питание рек
- •7.5. Водный режим рек
- •7.5.1. Виды колебаний водности рек
- •7.5.2. Фазы водного режима рек. Половодье, паводки, межень
- •7.6. Речной сток и его составляющие
- •7.7. Движение воды в реках. Распределение скоростей течения в речном потоке
- •7.8. Русловые процессы
- •7.8.1. Физические причины и типизация русловых процессов
- •7.8.2. Устойчивость речного русла
- •7.9. Термический и ледовый режим рек
- •7.9.1. Термический режим рек
- •7.9.2. Ледовые явления
- •7.10. Основные черты гидрохимического и гидробиологического режима рек
- •7.10.1. Гидрохимический режим рек
- •7.10.2. Гидробиологические особенности рек
- •8. Гидрология озер
- •8.1. Озера и их распространение на земном шаре
- •8.2. Типы озер
- •8.3. Ледовые явления на озерах
- •8.4. Основные особенности гидрохимических и гидробиологических условий. Донные отложения озер
- •8.4.1. Гидрохимические характеристики озер
- •8.4.2. Гидробиологические характеристики озер
- •9. Гидрология болот
- •9.1. Происхождение болот и их распространение на земном шаре
- •9.2. Типы болот
- •9.3. Строение, морфология и гидрография торфяных болот
- •9.4. Водный баланс и гидрологический режим болот
- •9.5. Влияние болот и их осушения на речной сток. Практическое значение болот
- •Библиографический список
- •Введение в гидрологию
- •308012, Г. Белгород, ул. Костюкова, 46.
2.3.2. Плотность воды
Плотность – главнейшая физическая характеристика любого вещества. Она представляет собой массу однородного вещества, приходящуюся на единицу его объема:
p = m/V, (4)
где т – масса; V – объем, м3; ρ – плотность, кг/м3.
Плотность воды, как и других веществ, зависит прежде всего от температуры и давления (а для природных вод – еще и от содержания растворенных и тонкодисперсных взвешенных веществ) и скачкообразно изменяется при фазовых переходах.
При повышении температуры плотность воды, как и любого другого вещества, в большей части диапазона изменения температуры уменьшается, что связано с увеличением расстояния между молекулами при росте температуры. Эта закономерность нарушается лишь при плавлении льда и при нагревании воды в диапазоне от 0 до 4 °С (точнее 3,98 °С). Здесь отмечаются еще две очень важные "аномалии" воды:
1) плотность воды в твердом состоянии (лед) меньше, чем в жидком (вода), чего нет у подавляющего большинства других веществ;
2) в диапазоне температуры воды от 0 до 4 °С плотность воды с повышением температуры не уменьшается, а увеличивается. Особенности изменения плотности воды связаны с перестройкой молекулярной структуры воды.
Эти две "аномалии" воды имеют огромное гидрологическое значение: лед легче воды и поэтому "плавает" на ее поверхности; водоемы обычно не промерзают до дна, так как охлажденная до температуры ниже 4 °С пресная вода становится менее плотной и поэтому остается в поверхностном слое.
Заметим попутно, что свойства воды послужили основой для единиц массы. В системе СГС масса 1 см3 химически чистой воды при температуре ее наибольшей плотности (~ 4°С) была принята за 1 г. В системе же СИ (международной) масса 1 м3 химически чистой воды оказалась в 1000 раз больше – 1000 кг.
Плотность льда зависит от его структуры и температуры. Пористый лед может иметь плотность намного меньшую, чем непористый. Еще меньше плотность снега. Свежевыпавший снег имеет плотность 80–140 кг/м3, плотность слежавшегося снега постепенно увеличивается от 140–300 (до начала таяния) до 240–350 (в начале таяния) и 300–450 кг/м3 (в конце таяния). Плотный мокрый снег может иметь плотность до 600–700 кг/м3. Снежники во время таяния имеют плотность 400–600, лавинный снег – 500–650 кг/м3.
Слой воды, образующийся при таянии льда и снега, зависит от толщины слоя льда или снега и их плотности.
Плотность воды изменяется также в зависимости от содержания в ней растворенных веществ и увеличивается с ростом солености. Плотность морской воды при нормальном атмосферном давлении может достигать 1025–1033 кг/м3.
Совместное влияние температуры и солености на плотность воды при нормальном атмосферном давлении выражают с помощью так называемого уравнения состояния морской воды. Такое уравнение в самом простом линейном виде записывают следующим образом:
ρ = ρ0 (1 + αТ + βS), (4)
где T – температура воды, °С; S – соленость воды, ‰; ρ0 – стандартная плотность воды при Т = 4 °С и S =0 ‰, т.е. 1000 кг/м3; α и β – коэффициенты, учитывающие характер зависимости плотности воды от ее температуры и солености. Коэффициент α отражает влияние на плотность воды термического расширения и поэтому имеет отрицательный знак; он различен при разной температуре; коэффициент β отражает влияние на плотность воды содержания растворенных веществ и имеет положительный знак. В простейшем случае принимают: α = -0,007 · 10-3 °С-1 при низкой (~ 5 °С) и α = -0,4 · 10 -3 °С-1 при высокой (~ 30 °С) температуре воды, β = 0,8·103 ‰.
Увеличение солености воды также приводит к понижению температуры наибольшей плотности (°С) согласно формуле
Тнаиб. пл. = 4·0,215S
Увеличение солености на каждые 10 ‰ снижает Тнаиб. пл. приблизительно на 2 °С.
Соотношения между температурами наибольшей плотности и замерзания влияют на характер процесса охлаждения воды и вертикальной конвекции – перемешивания, обусловленного различиями в плотности. Охлаждение происходит процесс вертикальной плотностной конвекции. Однако для пресных и солоноватых вод, имеющих соленость менее 24,7 ‰, такой процесс продолжается лишь до момента достижения водой температуры наибольшей плотности. Дальнейшее охлаждение воды ведет к уменьшению ее плотности и вертикальной конвекцией не сопровождается. Соленые воды при S > 24,7‰ подвержены вертикальной конвекции вплоть до момента их замерзания.
Таким образом, в пресных или солоноватых водах зимой в придонных горизонтах температура воды оказывается выше, чем на поверхности, и всегда выше температуры замерзания. Это обстоятельство имеет огромное значение для сохранения жизни в водоемах на глубинах.
Аномальное изменение плотности воды при изменении температуры влечет за собой такое же "аномальное" изменение объема воды: с возрастанием температуры от 0 до 4 °С объем химически чистой воды уменьшается, и лишь при дальнейшем повышении температуры– увеличивается; объем льда всегда заметно больше объема той же массы воды (вспомним, как лопаются трубы при замерзании воды).
Изменение объема воды при изменении ее температуры может быть выражено формулой
VT1=VT2 (1+ γΔT) (5)
где VT1 – объем воды при температуре Т1,; VT2 – объем воды при Т2; γ – коэффициент объемного термического расширения, принимающий отрицательные значения при температуре от 0 до 4 °С и положительные при температуре воды больше 4 °С и меньше 0 °С (лед); ΔТ = Т2- Т1.
Некоторое влияние на плотность воды оказывает также давление. Сжимаемость воды очень мала, но она на больших глубинах в океане все же сказывается на плотности воды. На каждые 1000 м глубины плотность вследствие влияния давления столба воды возрастает на 4,5–4,9 кг/м3. Поэтому на максимальных океанских глубинах (около 11 км) плотность воды будет приблизительно на 48 кг/м3 больше, чем на поверхности, и при S = 35 ‰ составит около 1076 кг/м3. Если бы вода была совершенно несжимаемой, уровень Мирового океана стоял бы на 30 м выше, чем в действительности. Малая сжимаемость воды позволяет существенно упростить гидродинамический анализ движения природных вод.