Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_Podgotovka_docx_1.docx
Скачиваний:
27
Добавлен:
11.03.2015
Размер:
17.18 Mб
Скачать
  1. Формула Планка. (лекция 7)

Планк выдвинул совершенно чуждую классической физике гипотезу о том, что энергия осциллятора Е может принимать лишь определенные дискретные значения, равные целому числу элементарных порций Е0 , которые он назвал квантами энергии, причем их величина пропорциональна частоте: Е0 = hν, где ν – частота излучения, а h – постоянная Планка.

А еще есть приведенная постоянная Планка:

Через приведенную постоянную получаем:

В состоянии равновесия распределение колебаний по значениям энергии должно подчиняться распр-ю Больцмана:

Вероятность значения величины энергии осциллятора

Среднее значение энергии

- формула Винта.

  1. Фотон как частица. (лекция 8)

Фотон – квант света.

Любая частица характеризуется массой покоя, полной энергией и импульсом.

Энергия:

Фотон – квазичастица

Имеет массу (только в движении), полную энергию и импульс

(с векторами)

(или с векторами)

  1. Давление света. (лекция 8)

dt – некоторый промежуток, за который фотоны, находящиеся внутри цилиндра, ударят по поверхности экрана и отрадятся

– импульс на единицу площади, n – количество фотонов в единице объема.

Сила, действующая на единицу поверхности экрана:

- объемная плотность энергии

F = 2w – световое давление (такое давление испытывает поглощающая площадка)

  1. Внешний фотоэффект. (лекция 8)

Фотоэффект – явление испускания электронов веществом под действием света.

Вылетают, значит, электроны из катода. А чтобы он не долетали до анода можно приложить задерживающую разность потенциалов.

Наименьшая частота, при которой начинается фотоэффект, называется его красной границей (зависит только от вещества, из которого сделан катод).

Часть энергии уходит на то, чтобы покинуть металл. Остальное – на приобретение скорости.

Уравнение Эйнштейна:

где А – работа выхода электрона из металла. Если ω < А – электроны не могут покинуть металл

Для ФЭ необходимо:

Уравнение Эйнштейна еще можно записать так:

  1. Эффект Комптона. (лекция 8)

Это процесс рассеяния фотонов на свободных электронах с изменением частоты рассеянного света. Это изменение длины волны зависит от угла рассеяния.

Пусть на покоящийся свободный электрон падает фотон с энергией h̅w и импульсом h̅k. Энергия электрона до соударения равна mc2 , импульс равен нулю. После соударения у электрона импульс p, а энергия:

Из закона сохранения энергии и импульса:

Возведем эти штуки в квадрат и выразим импульс:

Приравняем их и получим:

Графики:

  1. Волновые свойства частиц. Волна де Бройля. Опыт Дэвиса и Джермера. (лекция 9)

Луи де Бройль предположил, что любая частица обладает волновыми свойствами.

Каждой частице он поставил в соответствие волновую функцию в виде монохроматической плоской волны. Такая волна характеризуется частотой «омега» и волновым вектором k. Частоту де Бройль предложил находить из соотношения Эйнштейна:

E – полная энергия частицы, а волновой вектор k связан с импульсом соотношением:

Это формула для вычисления длины волны де Бройля. Длина волны де Бройля – это длина волны частицы, движущейся в свободном пространстве.

Волну де Бройля можно записать и так:

здесь r – радиус-вектор, задающий положение частицы.

В произвольный момент времени положение частицы определяется положением максимума суперпозиции волн (волнового пакета).

Скорость распространения такого пакета есть групповая скорость пакета. Далее доказывается, что групповая скорость волнового пакета равна скорости частицы.

Фазовая скорость волны де Бройля:

Получается, что фазовая скорость больше скорости света в вакууме.

Идею де Бройля проверяли Дэвис и Джермер. Вот их установка и полярная диаграмма:

Вот они доказали, что все частицы обладают волновыми свойствами, как и фотоны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]