
- •Оглавление предисловие
- •Основные понятия и вычислительные методы (теоретическая часть)
- •Метод Гаусса
- •Метод lu-разложения
- •Обращение матрицы и вычисление определителя
- •Число обусловленности матрицы (системы уравнений)
- •Вычислительные методы для решения нелинейных уравнений
- •Метод половинного деления
- •Метод Ньютона (метод касательных)
- •Метод секущих
- •Метод итераций
- •Преимущества и недостатки методов
- •Методы решения систем нелинейных уравнений
- •Метод Ньютона для систем уравнений
- •Метод итераций для систем уравнений
- •Некоторые сведения о полиномах и их корнях
- •Полиномиальные уравнения
- •Вычисление интегралов
- •Дифференциальные уравнения (численные методы)
- •Жесткие системы дифференциальных уравнений
- •Аналитическое решение систем линейных дифференциальных уравнений с постоянными коэффициентами
- •Нахождение экстремумов функции нескольких переменных
- •Метод покоординатного спуска
- •Симплекс-метод
- •Метод наискорейшего спуска
- •Метод Ньютона
- •Преобразования Фурье и Лапласа
- •Применение системы mathcad для решения вычислительных задач (практическая часть)
- •Исправления
- •Продолжение простейших вычислений
- •Точность
- •Символьные вычисления
- •Переменные
- •Функции пользователя
- •Операции математического анализа
- •Построение графиков функций одного переменного
- •Задания для самостоятельной работы
- •Матрицы
- •Векторы
- •Системы линейных уравнений
- •Число обусловленности матрицы
- •Собственные числа и собственные векторы матрицы
- •Графики функций двух переменных
- •Задания для самостоятельной работы
- •Нахождение корней нелинейного уравнения
- •Решение систем нелинейных уравнений
- •Корни многочлена
- •Наибольший общий делитель двух многочленов
- •Кратные корни
- •Результант
- •Задания для самостоятельной работы
- •Полиномиальные уравнения
- •Вычисление определенных интегралов
- •Решение дифференциальных уравнений
- •Задания для самостоятельной работы
- •Системы дифференциальных уравнений
- •Решение жестких систем дифференциальных уравнений
- •Решение линейных систем дифференциальных уравнений с постоянными коэффициентами
- •Задания для самостоятельной работы
- •Нахождение экстремумов функции
- •Экстремумы функции многих переменных
- •Преобразования Фурье и Лапласа
- •Дискретное преобразование Фурье
- •Задания для самостоятельной работы
Задания для самостоятельной работы
Найдите на квадрате рис. 50 экстремумы функции
.
Найдите в шаре радиуса 2 четырехмерного пространства с центром в начале координат экстремумы функции
.
Найдите непрерывное и дискретное преобразования Фурье функции
Период и число точек для дискретного преобразования подберите так, чтобы его значения и значения непрерывного преобразования отличались меньше, чем на 0.05. Постройте график модуля преобразования Фурье.
Пусть функция
является преобразованием Фурье функции
. Постройте график
, найдите частоты, на которых эта функция достигает максимума, укажите ее максимальные значения.
Найдите изображение функции
.
Найдите оригинал для функции
.
Библиографический список
Дьяконов, В. MATHCAD 8/2000: специальный справочник / В.Дьяконов. – СПб: Питер, 2000. – 592 с.
Плис, А.И. Mathcad:математический практикум для инженеров и экономистов: учеб. пособие для вузов / А.И. Плис, Н.А. Сливина. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2003. – 656 с.
Вержбицкий, В.М. Основы численных методов: учеб. для вузов / В.М.Вержбицкий. – М.: Высш. шк., 2002. – 840 с.
Бахвалов, Н.С. Численные методы / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. – М.: Лаборатория Базовых Знаний, 2001. – 632 с.