Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭС_УП.doc
Скачиваний:
542
Добавлен:
13.02.2015
Размер:
8.32 Mб
Скачать

22.5. Количество информации при оптимальном приёме непрерывных сигналов

В качестве критерия оптимальности при приеме непрерывных сигналов принимают минимум среднеквадратического отклонения между переданным u(t) и принятым uпр(t) сигналами [13]:

min ε2u(t) = min[uпр(t) - u(t)]2.

Этот критерий учитывает не только помехи, но и искажения принимаемых сигналов. Минимально возможное значение среднеквадратической ошибки min ε2u(t) при заданных условиях передачи определяет потенциальную помехоустойчивость приема непрерывных сигналов. Физически min ε2u(t) означает мощность помехи, поэтому расчет потенциальной помехоустойчивости сводится к вычислению минимально возможной мощности помехи на демодуляторе. Абсолютное значение мощности помехи не может быть объективной характеристикой ее влияния на сигнал, так как надо учитывать еще и уровень сигнала. Поэтому оценку помехоустойчивости приема непрерывных сигналов можно произвести количеством информации, получаемой при приеме этих сигналов.

Для рассматриваемой радиотехнической системы морской связи непрерывный сигнал может быть частотно-модулированным, который можно представить в виде ряда Котельникова. Для этого сигнала ранее найдено отношение сигнал/помеха: . Кроме того, зададимся помехой типа белого шума: N0 = 10-5В2/Гц – спектральная плотность помехи; Δf = 3,0 кГц – ширина полосы частот сигнала. Требуется определить количество информации при передаче сигнала по каналу связи.

Определим мощность помехи на входе приемного устройства:

Pп = N0Δf = 10-5 ∙ 3,0 ∙ 103 = 3,0 ∙ 10-2 Вт.

Среднеквадратическое отклонение помехи составит:

.

Найдем математическое ожидание напряжения сигнала:

.

Вероятность ошибки при появлении одного отсчета на входе приемника составит:

Pош = 0,5ехр(-0,5h2) = 0,5ехр(-0,5∙1,472) = 0,017.

Так же можно записать в виде:

Pош =Ф*((∞ - mп)/σп) - Ф*((l - mп)/σп) = 1 - Ф*(l/σп) = 0,017,

где l – порог обнаружения; mп = 0 – математическое ожидание помехи.

Следовательно,

Ф*(l / σп) = 1 - 0,17 ≈ 0,83.

По таблице нормального распределения [3] находим Ф*(l/σп) ≈ 0,83. Тогда

l/σп = 0,96; l = 0,96∙σп = 0,96∙0,173 = 0,166.

Вероятность отсутствия ошибки при приеме составит:

Pпр = 1 - Pош = 1 - 0,17 ≈ 0,83,

Pпр =Ф*((∞ - mс)/σс) - Ф*((l - mс)/σс) = 1 - Ф*((0,166 - 0,255)/σс).

После преобразования получим:

Ф*(-0,089/σс) = 1 - Pпр = 0,83.

По таблице нормального распределения находим:

Ф*(-0,089/σс) = Ф*(-0,96)0,83,

-0,089с = -0,096, σс = 0,093.

Количество информации на один отсчет определяется по формуле

.

22.6. Выигрыш в отношении сигнал/помеха

Другим способом определения помехоустойчивости приема непрерывных сигналов является вычисление отношения средних мощностей сигнала Pc и помехи Рп на выходе демодулятора

hвых = Pc / Рп.

В любом демодуляторе отношение сигнал/помеха на выходе hвых зависит не только от качественных показателей демодулятора, но и от отношения сигнал/помеха на его входе hвх. Помехоустойчивость систем передачи непрерывных сигналов оценивают выигрышем в отношении сигнал/помеха:

g = hвых / hвх = (Pc вых / Рп вых) / (Pc вх / Рп вх),

причем средние мощности помех на входе и выходе демодулятора определяются в полосе частот сигналов.

Выигрыш g показывает изменение отношения сигнал/помеха демодулятором. При g > 1 демодулятор улучшает отношение сигнал-помеха, при g < 1 получается не «выигрыш», а «проигрыш».

Расчетные формулы выигрыша для оптимального демодулятора при различных видах модуляции и помехе в виде аддитивного белого гауссовского шума приведены в таблице 22.3 где обозначены: KA2 =10 lg Pmax/P; α = Δfc/Fmкоэффициент расширения полосы, показывающий, во сколько раз ширина спектра модулированного сигнала Δfc превышает максимальную частоту модулирующего сигнала Fm; M коэффициент модуляции; т - индекс модуляции; КA коэффициент амплитуды модулирующего сигнала, представляющий собой отношение его максимальной мощности к средней и определяемый в логарифмических единицах по формуле (табл. 22.3).

Таблица 22.3

Вид

Выигрыш

Вил

Выигрыш

AM

ЧМ

БМ

αБМ = 2

ФМ

ОМ

αОМ = 1

АИМ-AM

АИМ

αАИМ

ФИМ-АМ

Анализ формул таблицы 22.3 показывает, что для AM максимальный выигрыш gАМ = 0,666 достигается при М = 1 и KA2 = 2. Практически всегда М < 1 и KA2 = 2, поэтому gАМ < 0,666, т. е. система с AM дает не обеспечивает «выигрыш». Физически малый выигрыш для AM объясняется тем, что большая часть мощности модулированного сигнала сосредоточена в несущей частоте, а полезная информация, создающая сигнал на выходе детектора, содержится в маломощных боковых колебаниях. Поэтому устранение несущей в АМ-сигнале (переход к БМ и ОМ) увеличивает выигрыш до значения g = α.

В широкополосных видах модуляции (ЧМ, ФМ, ФИМ и др.) выигрыш может быть намного больше единицы и резко возрастает при расширении спектра модулирующего сигнала (кубическая зависимость от коэффициента расширения полосы α). В связи с этим для увеличения выигрыша следует повышать девиацию частоты угловых модуляций или уменьшать длительность импульса несущей импульсных модуляций.

Формулы выигрыша являются исходными как для определения качества приема непрерывных сигналов, так и для сравнения различных систем передачи по помехоустойчивости.

Для рассматриваемой радиотехнической системы морской связи определим отношение сигнал/помеха на выходе демодулятора АМ-сигналов, если отношение сигнал/помеха на его входе hвх = 1,47 дБ. При этом параметры модуляции следующие: М = 0,6; коэффициент амплитуды KA = 14 дБ. При приеме используется фильтр, согласованный со спектром сигнала.

Подставив в формулу выигрыша AM параметры модуляции (mAМ = 0,6 и KA2 = 2, α = 2), получим:

Тогда hвых = g∙hвх = 0,165∙1,47 = 0,243.

В логарифмических единицах hвых =10∙lg 0,243 ≈ -6,1 дБ, т.к. g < 1 – это свидетельствует о проигрыше демодулятора.

Для рассматриваемой радиотехнической системы морской связи определим отношение сигнал/помеха на выходе демодулятора ЧМ-сигналов, если отношение сигнал/помеха на его входе hвх = 1,47 дБ. При этом параметры модуляции следующие: mЧМ =10, коэффициент амплитуды КA = 14 дБ, прием оптимальный.

Подставив в формулу выигрыша ЧМ параметры модуляции mЧМ =10 и KA2 = 101,4 = 25,1, α ≈ 2∙Δf / Fm = 2∙3∙103/(3,4∙103) = 1,77,

получим:

.

Тогда hвых = g hвх = 21,16∙1,47 = 31,1. В логарифмических единицах hвых =10∙lg 31,1 =14,93 дБ.

В общем случае при оптимальном приеме также имеет место проигрыш при применении АМ-сигналов по сравнению с ЧМ-сигналами для одинаковых условиях приема, т. е. равенстве мощностей модулированных сигналов и спектральной плотности мощности помех на входах приемников. При одних и тех же условиях отношение сигнал/помеха в системе с ЧМ не менее чем в (4,5∙mЧМ2) раз больше, чем в системе с AM. На практике в системах с ЧМ применяют, как правило, индекс модуляции mЧМ2 ≥ 5, и тогда преимущество ЧМ по сравнению с AM весьма значительное. Это преимущество получается за счет расширения полосы занимаемых частот.

Выигрыш при применении модулированных сигналов объясняется когерентным сложением в демодуляторе спектральных составляющих сигнала. Сложение составляющих помех осуществляется некогерентно.

Однако из изложенного не следует, что для различных видов модуляции и больших значений коэффициента а достигаются огромные значения выигрыша. Так, для ЧМ при mЧМ = 60 и KA2 =2 можно получить выигрыш g = 6,6∙105. Казалось бы, задача обеспечения высокого качества передачи непрерывных сигналов решается достаточно просто увеличением ширины спектра модулированного сигнала. Но с расширением спектра растет мощность помехи на входе демодулятора и соответственно снижается отношение сигнал/помеха hвх. При некотором пороговом значении hвх пор резко увеличивается уровень помех на выходе демодулятора, а отношение сигнал/помеха на выходе демодулятора скачкообразно уменьшается.

На рисунке 22.2 приведены кривые помехоустойчивости оптимальных демодуляторов при различных видах модуляции. Порогом помехоустойчивости демодулятора является минимальное отношение сигнал /помеха на его входе, ниже которого система передачи информации с заданной модуляцией теряет преимущество по помехоустойчивости. Пороговый эффект ограничивает возможность применения модуляций для повышения качества передачи непрерывных сигналов. Появление порога можно объяснить эффектом подавления сильным сигналом слабого в детекторе.

В надпороговой области сигнал превышает помеху, и в детекторе подавляется более слабая помеха. В подпороговой области помеха превышает сигнал, и в детекторе подавляется уже более слабый сигнал более сильной помехой. Пороговые явления начинают наблюдаться при равенстве пиковых значе­нии сигнала и помехи. Обычно коэффициент амплитуды помехи KA ≈ 3, порог помехоустойчивости hвх пор ≈ 10 дБ (рис. 22.2).

При синхронном детектировании AM, БМ, ОМ-сигналов пороговый эффект не наблюдается.

Рис. 22.2 Помехоустойчивость оптимальных демодуляторов при различных видах модуляции

В настоящее время разработаны и внедрены методы снижения порога помехоустойчивости для систем передачи информации с ЧМ как наиболее распространенной. С этой целью используются следящие фильтры додетекторной обработки сигнала. Следящий фильтр имеет полосу пропускания меньше, чем ширина спектра модулированною сигнала, и следит за мгновенной частотой ЧМ-сигнала, которая изменяется сравнительно медленно по закону модулирующего сигнала. Это позволяет уменьшить мощность помехи на выходе следящего фильтра примерно в mЧМ раз, что ведет к понижению порога на 5-7 дБ.

Вместо следящего фильтра часто используют следящий гетеродин, частота которого изменяется синхронно с частотой принимаемого сигнала. При этом полоса пропускания фильтра промежуточной частоты остается неизменной: П ≈ 2Fm, где Fm – максимальная частота модулирующего сигнала.

Для рассматриваемой радиотехнической системы морской связи определим производительность источника дискретных сообщений при скорости передачи информации В = 50 Бод пятиэлементным двоичным кодом.

Для равновероятных букв вероятность одной буквы русского алфавита Р(аi) = 1/32. В одной букве содержится I(ai) = - log 1/32 = 5 бит информации. При коэффициенте избыточности русского текста v = 0,5 следует, что энтропия текста определится как Н(А) = 2,5 бит на букву. Длительность передачи одного символа находится по формуле t1 = 1/B, а длительность передачи пяти символов и расстояния между буквами, т. е. одной буквы, по формуле tб = 7,5/B = 7,5/50 = 0,15 с. Тогда производительность дискретного источника составит:

V(A) = H(A)/tср = 2,5/0,15 = 16,67 бит/с.