
- •Теория электрической связи
- •Оглавление
- •I. Сообщения, сигналы и помехи, их математические модели
- •1. Общие сведения о системах электрической связи
- •1.1. Информация, сообщения, сигналы и помехи
- •1.2. Общие принципы построения систем связи
- •1.3. Классификация систем связи
- •2. Математическая модель сигналов
- •2.1. Математическое описание сигнала
- •2.2. Математическое представление сигналов
- •2.3. Геометрическое представление сигналов
- •2.4. Представление сигналов в виде рядов ортогональных функций
- •3. Спектральные характеристики сигналов
- •3.1. Спектральное представление периодических сигналов
- •3.2. Спектральное представление непериодических сигналов
- •3.3. Основные свойства преобразования Фурье:
- •1) Линейность.
- •4) Теорема запаздывания.
- •10) Спектры мощности.
- •4. Сигналы с ограниченным спектром. Теорема Котельникова
- •4.1. Разложение непрерывных сигналов в ряд Котельникова
- •Спектр периодической последовательности дельта-импульсов в соответствии с формулой для u(t) имеет следующий вид:
- •4.2. Спектр дискретизированного сигнала
- •4.3. Спектр дискретизированного сигнала при дискретизации импульсами конечной длительности (сигнал амплитудно-импульсной модуляции или аим сигнал)
- •4.4. Восстановление непрерывного сигнала из отсчётов
- •4.5. Погрешности дискретизации и восстановления непрерывных сигналов
- •5. Случайные процессы
- •5.1. Характеристики случайных процессов
- •Функция распределения вероятностей сп (фрв).
- •Двумерная фрв.
- •Функция плотности вероятностей случайного процесса (фпв)
- •Стационарность.
- •Эргодичность.
- •5.2. Нормальный случайный процесс (гауссов процесс)
- •5.3. Фпв и фрв для гармонического колебания со случайной начальной фазой
- •5.4. Фпв для суммы нормального случайного процесса и гармонического колебания со случайной начальной фазой
- •5.5. Огибающая и фаза узкополосного случайного процесса
- •5.6. Флуктуационный шум
- •6. Комплексное представление сигналов и помех
- •6.1. Понятие аналитического сигнала
- •6.2. Огибающая, мгновенная фаза и мгновенная частота узкополосного случайного процесса
- •7. Корреляционная функция детерминированных сигналов
- •7.1. Автокорреляция вещественного сигнала
- •Свойства автокорреляционной функции вещественного сигнала:
- •7.2. Автокорреляция дискретного сигнала
- •7.3. Связь корреляционной функции с энергетическим спектром
- •7.4. Практическое применение корреляционной функции
- •II. Методы формирования и преобразования сигналов
- •8. Модуляция сигналов
- •8.1. Общие положения
- •8.2. Амплитудная модуляция гармонического колебания
- •8.3. Балансная и однополосная модуляция гармонической несущей
- •9. Методы угловой модуляции
- •9.1. Принципы частотной и фазовой (угловой) модуляции
- •9.2. Спектр сигналов угловой модуляции
- •9.3. Формирование и детектирование сигналов амплитудной и однополосной амплитудной модуляции
- •9.4. Формирование и детектирование сигналов угловой модуляции
- •10. Манипуляция сигналов
- •10.1. Временные и спектральные характеристики амплитудно- манипулированных сигналов
- •10.2. Временные и спектральные характеристики частотно-манипулированных сигналов
- •10.3. Фазовая (относительно-фазовая) манипуляция сигналов
- •III. Алгоритмы цифровой обработки сигналов
- •11. Основы цифровой обработки сигналов
- •11.1. Общие понятия о цифровой обработке
- •11.2. Квантование сигнала
- •11.3. Кодирование сигнала
- •11.4. Декодирование сигнала
- •12. Обработка дискретных сигналов
- •12.1. Алгоритмы дискретного и быстрого преобразований Фурье
- •12.2. Стационарные линейные дискретные цепи
- •12.3. Цепи с конечной импульсной характеристикой (ких-цепи)
- •12.4. Рекурсивные цепи
- •12.5. Устойчивость лис-цепей
- •13. Цифровые фильтры
- •13.1. Методы синтеза ких-фильтров
- •13.2. Синтез бих-фильтров на основе аналого-цифровой трансформации
- •IV. Каналы связи
- •14. Каналы связи
- •14.1. Модели непрерывных каналов
- •14.2. Модели дискретных каналов
- •V. Теория передачи и кодирования сообщений
- •15. Теория передачи информации
- •15.1. Количество информации переданной по дискретному каналу
- •15.2. Пропускная способность дискретного канала
- •15.3. Пропускная способность симметричного дискретного канала без памяти
- •15.4. Методы сжатия дискретных сообщений
- •15.4.1. Условия существования оптимального неравномерного кода
- •15.4.2. Показатели эффективности сжатия
- •15.4.3. Кодирование источника дискретных сообщений методом Шеннона-Фано
- •15.4.4. Кодирование источника дискретных сообщений методом Хаффмена
- •15.5. Количество информации, переданной по непрерывному каналу
- •15.6. Пропускная способность непрерывного канала
- •16. Теория кодирования сообщений
- •Классификация помехоустойчивых кодов
- •16.1. Коды с обнаружением ошибок
- •16.1.1. Код с проверкой на четность.
- •16.1.2. Код с постоянным весом.
- •16.1.3. Корреляционный код (Код с удвоением).
- •16.1.4. Инверсный код.
- •16.2. Корректирующие коды
- •16.2.1. Код Хэмминга
- •16.2.2. Циклические коды
- •16.2.3. Коды Рида-Соломона
- •V. Помехоустойчивость
- •17. Помехоустойчивость систем передачи дискретных сообщений
- •17.1. Основные понятия и термины
- •17.2. Бинарная задача проверки простых гипотез
- •17.3. Приём полностью известного сигнала (когерентный приём)
- •17.4. Согласованная фильтрация
- •17.5. Потенциальная помехоустойчивость когерентного приёма
- •17.6. Некогерентный приём
- •17.7. Потенциальная помехоустойчивость некогерентного приёма
- •18. Помехоустойчивость систем передачи непрерывных сообщений
- •18.1. Оптимальное оценивание сигнала
- •18.2. Оптимальная фильтрация случайного сигнала
- •18.3. Потенциальной помехоустойчивости передачи непрерывных сообщений
- •19. Адаптивные устройства подавления помех
- •19.1. Основы адаптивного подавления помех
- •19.2. Подавление стационарных помех
- •19.3. Адаптивный режекторный фильтр
- •19.4. Адаптивный высокочастотный фильтр
- •19.5. Подавление периодической помехи с помощью адаптивного устройства предсказания
- •19.6. Адаптивный следящий фильтр
- •19.7. Адаптивный накопитель
- •VI. Многоканальная связь и распределение информации
- •20. Многоканальная связь и распределение информации
- •20.1. Частотное разделение каналов
- •20.2. Временное разделение каналов
- •20.3. Кодовое разделение каналов
- •20.4. Синхронизация в спи с многостанционным доступом
- •20.5. Коммутация в сетях связи
- •VII. Эффективность систем связи
- •21. Оценка эффективности и оптимизация параметров телекоммуникационных систем (ткс)
- •21.1. Критерии эффективности
- •21.2. Эффективность аналоговых и цифровых систем
- •21.3. Выбор сигналов и помехоустойчивых кодов
- •22. Оценка эффективности радиотехнической системы связи
- •22. 1. Тактико-технические параметры радиотехнической системы связи
- •22.2. Оценка отношения сигнал/помеха на входе радиоприемники радиотехнической системы связи
- •22.3. Оптимальная фильтрация непрерывных сигналов
- •22.4. Количество информации при приёме дискретных сигналов радиотехнической системы связи
- •22.5. Количество информации при оптимальном приёме непрерывных сигналов
- •22.6. Выигрыш в отношении сигнал/помеха
- •22.7. Пропускная способность каналов радиотехнической системы связи
- •VIII. Теоретико-информационная концепция криптозащиты сообщений в телекоммуникационных системах
- •23. Основы криптозащиты сообщений в системах связи
- •23.1. Основные понятия криптографии
- •23.2. Метод замены
- •23.3. Методы шифрования на основе датчика псевдослучайных чисел
- •23.4. Методы перемешивания
- •23.5. Криптосистемы с открытым ключом
- •13.6. Цифровая подпись
- •Заключение
- •Список сокращений
- •Основные обозначения
- •Литература
- •Теория электрической связи
19.3. Адаптивный режекторный фильтр
В некоторых случаях входной сигнал представляет собой сумму составляющей сигнала и аддитивной синусоидальной помехи. Обычно для подавления такой помехи используется режекторный фильтр. В этом подразделе рассматривается реализация режекторного фильтра с помощью адаптивного устройства подавления помех. Преимущества такого режекторного фильтра заключаются в том, что он позволяет регулировать полосу частот и осуществлять адаптивное слежение за точным значением частоты и фазы помехи. Эти результаты распространяются и на случай, когда на эталонном входе имеется сигнал на многих частотах [14].
На рис. 19.3. приведена схема устройства подавления одночастотной помехи с двумя адаптивными весовыми коэффициентами. На вход устройства может подаваться сигнал любого вида – случайный, детерминированный, периодический, импульсный и т. д. – или любая комбинация этих сигналов. На эталонном входе действует чистый синусоидальный сигнал C∙cos(Ω0t + φ). Отсчеты входных сигналов берутся с интервалами Т секунд. Здесь x1k – отсчеты эталонного сигнала, а x2k – отсчеты этого сигнала, сдвинутого по фазе на 90°.
Преимущества такого режекторного фильтра заключаются в том, что он позволяет регулировать полосу частот, формировать нули и осуществлять адаптивное слежение за точным значением частоты и фазы помехи.
Рис. 19.3. Одночастотный адаптивный режекторный фильтр
Рассматривая прохождение сигнала от входа до выхода системы на рисунке 19.3. можно найти линейную передаточную функцию устройства подавления помех. При замкнутой петле обратной связи передаточная функция устройства подавления помех
.
(19.19)
Из равенства (19.19) следует, что на частоте ω0 эталонного сигнала устройство подавления одночастотной помехи обладает свойствами режекторного фильтра. Нули передаточной функции расположены на z-плоскости в точках
z = e±jωo. (19.20)
т. е. точно на окружности единичного радиуса под углами ±ω0 радиан.
Полюса передаточной функции расположены в точках
z = (1- μC2)∙cosω0 ± j[(1 - 2μC2) - (1 - 2μC2)2∙cos2ω0]1/2, (19.21)
т. е. внутри окружности единичного радиуса на расстоянии от начала координат (1 - 2μC2)1/2, приближенно равном 1 - 2μC2, и под углами
±cos-1[(1 - μC2) (1 - 2μC2)-1/2cos ω0]. (19.22)
При медленной адаптации (т. е. при небольших значениях μC2) эти углы определяются множителем, которым приблизительно равен 1.
Рис. 19.4. Передаточная функция одночастотного адаптивного устройства подавления помех
Основной вывод состоит в том, что в практических случаях углы полюсов и нулей почти равны.
На рис. 19.4 показано расположение полюсов, нулей и точек половинной мощности передаточной функции. Поскольку нули лежат на окружности единичного радиуса, глубина режекции в децибелах для передаточной функции на частоте ωо равна бесконечности.
Форма провала АЧХ определяется расстоянием, которое приблизительно равно μС2. Длина дуги окружности единичного радиуса, заключенной между точками половинной мощности, соответствует полосе режекции фильтра и равна
BW = 2μС2 рад = μС2/πT Гц. (19.23)
Форма АЧХ в полосе режекции обычно определяется добротностью Q, представляющей собой отношение центральной частоты к ширине полосы режекции:
.
(19.24)
Таким образом, устройство подавления одночастотной помехи при синусоидальном эталонном сигнале эквивалентно устойчивому режекторному фильтру. В общем случае глубина режекции адаптивного устройства выше, поскольку в результате адаптивного процесса даже при медленном изменении частоты эталонного сигнала поддерживается правильное для подавления соотношение фаз.