Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
226
Добавлен:
12.02.2015
Размер:
2.47 Mб
Скачать

2.2. Выборка и её характеристики

Любая группа однородных данных, собранных при измерении параметров – это с т а т и с т и ч е с к а я с о в о к у п н о с т ь или более кратко: в ы б о р к а , т.е. часть генеральной совокупности.

Каждая выборка характеризуется показателями (оценками) нахождения центра распределения данных в группе и характеристиками рассеяния этих данных.

а) Характеристики положения центра группирования данных

Таких характеристик несколько :

  • Выборочное среднее арифметическое - это сумма всех данных,

делённая на их число: = Σ Х i/ n , где– среднее, Х i– каждое значение в группе, Σ – знак суммирования, а n – объём выборки.

Например, получены девять чисел: 6, 7, 3, 5, 8, 4, 9, 7, 5. Для них среднее арифметическое = 6.

Выборочное среднеарифметическое – наиболее широко используемая мера центра распределения группы данных. Достоинства этой меры – это «центр тяжести» всех данных, в ней используются все данные, не нужна их сортировка. Недостатки – резко выделяющиеся значения иногда портят картину, часто требуется значительное время для расчёта, часто среднее не совпадает ни с одним из фактических значений.

  • Мода- это то значение, которое встречается в группе данных

наиболее часто.

Например, из девяти чисел 6, 7, 3, 5, 8, 4, 5, 7, 5 модой будет = 5.

Для групп данных может существовать более чем одна мода. Достоинства этой меры – не надо ни вычислять, ни сортировать данные, резко выделяющиеся значения не влияют на результат, это одно из фактических значений, его можно отыскать визуально на графике распределения данных. Недостаток – данные могут и не иметь моды.

  • Медиана- это срединное значение данных упорядоченных

(или ранжированных) по возрастанию или по убыванию. Для чётного числа данных медиана – среднее из двух ближайших к центру значений.

Например, из десяти чисел 2, 2, 3, 3, 5, 7, 7, 7, 8, 8 медианой будет число (или) = 6.

Достоинства медианы – позволяет представить, где расположена бо'льшая часть, требуется относительно мало вычислений. Недостатки – данные надо сортировать, используются не все данные. Резко выделяющиеся значения могут быть существенными.

Б) Характеристики изменчивости (рассеяния) данных в группе

Наиболее используемы в практике четыре характеристики:

- Размах- в группе данных R – это разность между наибольшим и наименьшим значениями : R = Х max– Х min.

Например, из девяти чисел 5, 3, 7, 9, 8, 5, 4, 5, 8 - R = 9 – 3 = 6.

Размах, как меру рассеяния, используют для малых выборок.

  • Выборочная дисперсия- σ - равна сумме квадратов отклоне-

ний от среднего, делённой на объём выборки.

Расчётная формула : σ = Σ ( Х ί) 2 /n.

При решении практических задач часто используется исправленная выборочная дисперсия:

S2 = Σ ( Х ί) 2 / (n– 1).

Для предыдущей группы значений σ = 4,25 .

Исправленное выборочное среднее квадратическое отклонение:

.

Это отклонение называют также стандартным .

Дисперсия наилучшим образом характеризует разбросанность случайной величины.

К дисперсии применимо правило аддитивности, т.е. дисперсия суммы или разности выборок равна сумме дисперсий каждой выборки (рис. 1.)

Z=X+YZ=X–Y

μ z x yμ z x–μ y

σ z = σ x + σ y ( S 2z = S 2x + S 2y ) σ z = σ x + σ y ( S 2z = S 2x + S 2y )

Рис. 4.

Соотношение средних и дисперсий для суммы и разности выборок

Дисперсия равна квадрату стандартного отклонения: σ = S 2.

Для генеральной совокупности в знаменателе приведённых формул берётся n , а для выборки : n – 1 (когда оценивание надо сделать по выборке для генеральной совокупности).

- Коэффициент вариации- равен стандартному отклонению, делённому на среднее, и выражается в процентах:v=Sּ 100 /, % .