Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kursach_Evgenia. переделанная..doc
Скачиваний:
36
Добавлен:
11.02.2015
Размер:
578.56 Кб
Скачать

1.1 Санитарно-гигиенические требования к строительным конструкциям

Основные конструктивные элементы животноводческих помещений подразделяют на несущие и ограждающие.

Ограждающие элементы (наружные и внутренние стены, полы, перегородки, заполнение оконных и дверных проёмов) защищают внутренние помещения от атмосферных воздействий. С их помощью внутри зданий поддерживаются требуемые температурно-влажностные и акустические условия, а также отделяются помещения друг от друга.

Ограждающие элементы должны быть защищены от повышенной влажности и выпадения конденсата.

В таких помещениях сохраняются оптимальный температурно-влажностный режим и другие показатели микроклимата. Широко применяют облегченные конструкции из новых строительных материалов заводского изготовления с малой теплопередачей и повышенным коэффициентом термического сопротивления — легкие бетоны, многослойные бетонные панели, ячеистый полистирол и др.

Конструкции здания должны быть построены из недорогих, но прочных материалов, с долговечностью, то есть со сроком службы, не менее 50—100 лет и достаточной степенью огнестойкости.

Несущие конструктивные элементы здания (фундамент, стены, каркас, пол и перекрытия) воспринимают силовые, температурные, вертикальные и горизонтальные нагрузки, возникающие от массы оборудования, людей, снега, собственной массы конструкций, действия ветра и т.д. Несущие элементы должны обладать прочностью, долговечностью, сопротивляемостью к воздействию факторов окружающей среды, что обеспечивает прочность всего сооружения.

Для создания комфортных условий животным строительные конструкции для помещения следует строить из материалов с низкой теплопроводностью. Нахождение животных в зданиях из железобетонных конструкций (стены, пол, потолок) в зимний период всегда ведёт к увеличению теплопотерь организмами путём радиации, а в сильно нагреваемых помещениях летом — к перегреву и тепловому удару.

1.2 Значение микроклимата, факторы его формирования и теплообмен между животными и окружающей средой

Предъявляют особо строгие требования к созданию оптимального микроклимата, который на современном этапе имеет первостепенное значение для сохранности и высокой продуктивности животных при меньших затратах корма на единицу продукции.

Микроклимат (от греч. mikros — малый + климат) — комплекс физических факторов окружающей среды в ограниченном пространстве, оказывающий влияние на тепловой обмен организма.

В животноводстве под микроклиматом понимают прежде всего климат помещений для животных, который определяют как совокупность физического состояния воздушной среды, его газовой, микробной и пылевой загрязненности с учетом состояния самого здания и технологического оборудования. Оптимальный микроклимат способствует увеличению продуктивности животных, снижению расхода кормов на получение единицы продукции, положительно влияет на сохранение здоровья животных. Микроклимат в помещениях зависит от местного (зонального) климата и времени года, термического и влажностного сопротивления ограждающих конструкций зданий, состояния вентиляции, степени освещения и отопления помещений, состояния канализации и качества уборки навоза, технологии содержания животных, их видового и возрастного состава, уровня теплопродукции. Основные параметры микроклимата животноводческих помещений регламентируются нормами технологического проектирования.

При длительном содержании свиней в помещениях без выгулов в условиях почти полной ограниченности движений создание оптимального микроклимата приобретает первостепенное значение.

Источником образования энергии, необходимой для жизнедеятельности и образования тепла в организме, служат корма; в критических же ситуациях расходуются резервы тела животных. Выделением тепла сопровождаются постоянно протекающие в организме процессы синтеза белков, переноса ионов (Na, К и др.), особенно в мышцах и нервах. Следовательно, не вся освобождаемая в организме энергия сразу превращается в тепло. Но в конечном итоге вся выполненная в организме работа, все виды энергии переходят в тепловую.

Наряду с процессами образования тепла в организме постоянно происходят его потери. Если среда, окружающая животное, холодная, то потери тепла могут возрасти до размеров, невыгодных организму. При высоких температурах воздуха окружающей среды возможности организма увеличить отдачу тепла физическим путем еще более ограничены.

Процесс теплорегуляции имеет огромное значение для организма животного. Под теплорегуляцией понимают способность организма адаптироваться к высоким и низким температурам среды, поддерживая температуру тела на постоянном уровне. Механизм теплорегуляции с одной стороны, заключается в повышении или уменьшении образования тепла в организме, а с другой — в увеличении или уменьшении отдачи его в окружающую среду.

У взрослых животных повышение температуры окружающей среды сопровождается усилением энергетического обмена, так как при этом происходит учащение дыхания и кровообращения, потоотделения. Однако у молодняка при повышении температуры воздуха не всегда увеличивается энергетический обмен, чаще происходит уменьшение потребления кислорода.

На снижение температуры окружающей среды, как взрослые, так и новорожденные животные реагируют увеличением потребления кислорода. Следовательно, животные лучше приспособлены к пониженным температурам воздуха, чем к повышенным. В условиях низких температур теплопродукция увеличивается за счет поедания большого количества корма и повышения мышечной активности животного.

Хорошее физиологическое состояние и высокая продуктивность животных возможны при условии сохранения теплового равновесия организма (соответствия образования тепла его потерям). Однако оно сохраняется только при оптимальных микроклиматических условиях: температуре, влажности, скорости движения воздуха и радиационной температуре. Микроклимат во многом может способствовать или препятствовать эффективности функционирования физиологических механизмов сохранения или отдачи тепла организмом, то есть физической терморегуляции.

Взрослые животные при оптимальных микроклиматических условиях отдают тепло: конвекцией и радиацией — примерно по 25—30%, проведением — до 15%, испарением с кожи — до 6—7% (рис. 1). Остальные 15—20% тепла животные теряют на нагревание пищи и воды (около 6—8%), вдыхаемого воздуха и испарение воды в легких (около 5 и 9%), а также с калом, мочой, молоком (около 0,7—1%). Основные пути потери тепла организмом связаны с кожей — около 80%. Однако взаимоотношения между вышеперечисленными путями значительно меняются в зависимости от температуры. Так, потери тепла излучением зависят от разницы между температурой кожи тела животного и радиационной температурой.

Рис. 1.

Значительные потери тепла связаны с испарением пота с поверхности тела животного, поэтому с повышением температуры внешней среды, приближением ее значений к температуре тела за счет испарения является единственно возможным путем. У свиней потовые железы расположены на ограниченных участках тела, поэтому основное испарение происходит через открытый рот, при учащенном дыхании.

В связи с тем, что усиление движения воздуха повышает потери тепла конвекцией и испарением, при высоких температурах среды его следует считать благоприятным фактором. Это используют в практике и увеличивают вентиляцию животноводческих помещений в летний период.

Безветренная погода при высокой температуре воздуха (особенно влажного) ухудшает теплоотдачу организма, способствует перегреву. Значительные скорости движения воздуха при пониженной его температуре и повышенной влажности резко усиливают потери тепла, в том числе испарением, и могут привести к простудным заболеваниям.

При оптимальном микроклимате создаются наилучшие условия для функционирования сложных и постоянно действующих механизмов терморегуляции.

Функционирование системы терморегуляции служит примером обеспечения гомеостаза организма в условиях постоянных и тесных взаимоотношений его с динамичной средой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]