Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3154

.pdf
Скачиваний:
3
Добавлен:
15.11.2022
Размер:
3.16 Mб
Скачать

автоматизации, обеспечивающей минимальное участие человека в выполнении прямых производственных функций, связанных с технологическим процессом обработки изделий.

Гибкие производственные системы основаны на возможности использования оборудования с числовым программным управлением (ЧПУ). Основным видом оборудования в ГПС являются обрабатывающие центры - одна из разновидностей станков с ЧПУ. В состав технологического объекта управления ГПС может входить следующее технологическое оборудование:

гибкий технологический модуль (ГТМ) — производственная единица, состоящая из одного или нескольких элементов технологического оборудования с ЧПУ, выполненная на базе миниили микро-ЭВМ, способная функционировать автономно (по командам производственного персонала) или по командам от управляющего вычислительного комплекса. Гибкий технологический модуль, как правило, оснащен роботизированными устройствами подачи и удаления обработанных изделий и инструментов, автоматизированными устройствами (датчиками) измерения и контроля в процессе обработки, диагностики отказов и восстановления работоспособности, сбора

иудаления отходов производства;

автоматизированный складской модуль — единица производственного оборудования с локальной системой управления, выполненной на базе миниили микро-ЭВМ, способная функционировать автономно или по командам от управляющего вычислительного комплекса (УВК);

вспомогательный модуль (модуль комплектации инструментов, подготовки приспособлений, загрузки и выгрузки изделий и т. п.) - совокупность оборудования, предназначенного для обеспечения технологических модулей;

гибкий контрольно-измерительный модуль (при отсутствии операций контроля в ГТМ) - совокупность программнопереналаживаемого оборудования, предназначенного для осуществления контроля качества выполнения операций в ГТМ;

20

автоматизированный транспортный модуль — единица производственного оборудования с локальной системой управления, выполненной на базе миниили микро-ЭВМ, способная функционировать автономно или по командам от УВК.

Система оборудования с ЧПУ предназначена для непосредственного управления технологическим оборудованием и обеспечения взаимосвязи с другими элементами гибкой производственной системы. Локальная система управления предназначена для обеспечения взаимосвязи с другими элементами ГПС и для управления операциями по загрузке, размещению и выдаче заготовок, готовых изделий, приспособлений, инструментов, поддонов.

В соответствии со структурно-организационными признаками гибкая производственная система может быть представлена в виде:

гибкого автоматизированного участка (ГАУ), функ-

ционирующего по технологическому маршруту, в котором предусмотрена возможность изменения последовательности использования технологического оборудования;

гибкой автоматизированной линии (ГАЛ), технологи-

ческое оборудование которой расположено в последовательности, соответствующей технологическим операциям;

гибкого автоматизированного цеха (ГАЦ), представ-

ляющего собой в различных сочетаниях совокупность ГАЛ (ГАУ) для изготовления изделий данной номенклатуры;

гибкого автоматизированного завода (ГАЗ), на кото-

ром осуществлена частичная или полная интеграция нескольких гибких автоматизированных цехов, линий, участков, модулей в единую производственную систему.

Предусмотрены также гибкие производственные ком-

плексы (ГПК), представляющие собой гибкую производственную технологию, состоящую из нескольких гибких производственных модулей (которые объединены автоматизированной системой управления и автоматизированной транспортноскладской системой), автономно функционирующую в течение заданного интервала времени и имеющую возможность

21

встраивания в систему более высокой ступени автоматизации. Гибкая производственная система может представлять собой гибкий производственный комплекс на уровне рабочего места (участка) или даже целую производственную систему из нескольких технологических модулей, взаимосвязанных между собой с помощью транспортных, складских, контрольноизмерительных и вспомогательных модулей.

Автоматизированная система управления гибкой производственной системой (АСУ ГПС) — автоматизированная многоуровневая интегрированная система. Она функциониру-

ет как автономно, так и во взаимодействии с компонентами интегрированной автоматизированной системы управления (ИАСУ) предприятия. Автоматизированная система управления производством выдает АСУ ГПС планы-графики запуска партий изделий в обработку, план подготовки производства для ГПС. Система автоматизации проектных работ осуществляет автоматизированную подготовку управляющих программ для гибких технологических и контрольно-измерительных модулей.

В иерархии ИАСУ для АСУ ГПС обычно выделяется уровень управления технологическим процессом производства и уровень оперативно-календарного управления, который включает управление технологической подготовкой производства, планирование, учет, контроль, анализ и регулирование хода производства в условиях функционирования ГПС. Уровень управления технологическим процессом производства взаимодействует с уровнем локального управления технологическим оборудованием, включая системы ЧПУ в составе ГТМ, АСУ складскими и транспортными модулями, локальные системы управления контрольно-измерительными модулями, терминальные пульты вспомогательных модулей. Уровень оператив- но-календарного управления взаимодействует с уровнем управления производством всего предприятия, т. е. с АСУП. Автоматизированная система управления гибкой производственной системой обычно строится как компонент ИАСУ предприятия.

22

Рассмотрим технологические аспекты функционирования гибкой производственной системы «по шагам». Процесс проектирования продукции осуществляется по заданию заказчика посредством диалога оператора с ЭВМ. Оператор выдает технические требования к продукции, а ЭВМ запоминает, стандартизирует информацию и производит необходимые расчеты. В процессе проектирования ЭВМ может непрерывно запрашивать и учитывать информацию о себестоимости продукции, производительности оборудования и ходе процессов производства. Затем ЭВМ, используя эту информацию, определяет оптимальные условия для обеспечения минимальной себестоимости и максимальной производительности.

Полученная информация используется для производственного планирования с целью оптимизации процесса обработки путем выбора соответствующего оборудования, технологических процессов, последовательности операций, условий обработки и т. д. Эта информация, в свою очередь, используется для управления автоматизированными станками и оборудованием, которые могут самонастраиваться, автоматически с помощью промышленных роботов или других технических средств загружать и разгружать детали, выбирать инструмент, производить различные операции обработки резанием и давлением, а также термическую обработку и сборку.

Обратная связь от станков и оборудования осуществляется через специальные контуры. ЭВМ непрерывно принимает информацию о реальных параметрах оборудования и процессов, сравнивает их с «идеальными» запланированными. Если система обнаруживает отклонения от запланированной программы работ, то она отвергает первоначальный вариант и, осуществляя динамическое планирование, регулирует условия работы станков и процессов и добивается, чтобы производство функционировало в оптимальном режиме.

В то же время станки и оборудование осуществляют самодиагностику; если при этом обнаруживается потенциальная возможность отказа какого-нибудь узла, то принимаются необходимые корректирующие действия, включающие замену

23

вышедшего из строя модуля в системе. Более того, встроенные в станки приборы и контрольные машины осуществляют автоматический контроль изделия на всех этапах производства, чтобы любое отклонение от заданных технических требований автоматически корректировалось и поддерживалось в пределах допусков. Таким образом, окончательно собранное изделие оказывается полностью проверенным и соответствующим техническим требованиям, предъявляемым к изделию.

Автоматизированная система управления ГПС представляет собой систему, в которой одна часть управляющей информации включает плановые задания, время запуска в обработку, другая - технологическую информацию, содержащую управляющие программы, алгоритмы управления технологическим и вспомогательным оборудованием, информацию от станков на их обслуживание и т. п. Информационное обеспечение гибкой производственной системы состоит из пакетов управляющих программ для станка с ЧПУ, транспортных средств и роботов, накопительных систем заготовок, деталей, инструмента, оснастки и другого оперативного информационного фонда, содержащего данные о состоянии производственного процесса, а также плановые и фактические данные о ходе производственного процесса.

Рациональное управление состоит в том, чтобы каждая вышестоящая подсистема давала нижестоящей задание, не жестко регламентированное, а в «общих чертах», предоставляя им известную инициативу, но так ставя перед ними цели, чтобы каждая подсистема, стремясь к своей цели, работала в согласии с интересами вышестоящей подсистемы. На практике системный подход сводится к тому, что каждое звено, работа которого оптимизируется, следует рассматривать как часть другой, более обширной системы и необходимо выяснить, как влияет работа данной подсистемы на работу всей системы.

Иерархическая структура автоматизированного управления позволяет объединять управление различными производственными объектами и согласовывать их работу, т. е. подойти к производственному процессу как к единому целому, а не как

24

к набору независимых частей. При этом можно автоматизировать весь комплекс производственных процессов, включая транспортные операции и различные организационные задачи.

1.4. Системы автоматизированного проектирования (САПР)

Основной стратегией проведения крупных мероприятий по совершенствованию технической и технологической базы в промышленности, а также внедрению новых методов организации производства, является широкое использование систем автоматизированного проектирования. От успехов в создании и развитии САПР во многом зависят возможности и сроки разработки образцов новой техники, внедрение интегрированных автоматизированных производств, рост производительности труда инженерно-технических работников, занятых проектированием.

1.4.1. Определение и классификация САПР

Система автоматизированного проектирования (САПР) - это комплекс средств автоматизации проектирования, взаимосвязанных с необходимыми подразделениями проектной организации или коллективом специалистов (пользователей системы), выполняющий автоматизированное проектирование (ГОСТ 22487). Другими словами, САПР — это комплекс про- граммно-аппаратных средств автоматизации проектных конст- рукторско-технологических, а также производственных работ.

Основное назначение САПР — получение оптимальных проектных решений. Проектирование в САПР осуществляется путем декомпозиции проектной задачи с последующим синтезом общего проектного решения. В процессе синтеза проекта используются информационные ресурсы базы данных в условиях диалогового взаимодействия проектировщиков с комплексом средств автоматизации. Технологии проектирования в САПР базируются на следующих принципах:

использование комплексного моделирования;

25

интерактивное взаимодействие с математической мо-

делью;

принятие проектных решений на основе математических моделей и проектных процедур, реализуемых средствами вычислительной техники;

обеспечение единства модели проекта на всех этапах и стадиях проектирования;

использование единой информационной базы для автоматизированных процедур синтеза и анализа проекта, а также для управления процессом проектирования;

проведение многовариантного проектирования и комплексной оценки проекта с применением методов оптимизации;

обеспечение максимальной инвариантности информационных ресурсов, их слабой зависимости от конкретной области применения, простоты настройки на отраслевую специфику.

Поскольку невозможно для ряда задач полностью автоматизировать процесс проектирования, актуальным является эффективное интерактивное общение пользователя с ЭВМ.

В большинстве САПР проект создается на основе типовых проектных процедур, типовых проектных решений, типовых элементов проекта. Этот подход полностью приемлем для систем управления, но при наличии хорошо организованной базы данных и интегрированной информационной основы. Таким образом, эффективность применения технологий САПР в системах управления определяется, прежде всего, степенью интеграции информационной основы.

Роль САПР в автоматизации производства не ограничивается функциями автоматизации конструирования и технологической подготовки производства. Не менее важная задача САПР — проектирование самих автоматизированных производств, включая проектирование робототехнических комплексов, технологического оборудования, их компоновку, размещение и т. п. Для этого в САПР должны быть мощные средства имитационного моделирования работы производственных

26

линий, участков и цехов; средства синтеза и анализа объектов с физически разнородными элементами (роботами, манипуляторами, технологическими аппаратами; инструментальные средства проектирования программного обеспечения; средства разработки вычислительных сетей и др.).

Составными структурными частями САПР являются подсистемы, обладающие всеми свойствами систем и создаваемые как самостоятельные. Подсистемой САПР называют выделенную по некоторым признакам часть САПР, обеспечивающую получение законченных проектных решений.

По назначению подсистемы САПР разделяют на проектирующие и обслуживающие.

Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.

Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными, подсистемы разработки и сопровождения программного обеспечения CASE (Computer Aided Software Engineering), обучающие подсистемы для ос-

воения пользователями технологий, реализованных в САПР. Структурирование САПР по различным аспектам обу-

словливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:

техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);

математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;

27

программное (ПО), представляемое компьютерными программами САПР;

информационное (ИО), состоящее из БД, систем управления базами данных (СУБД), а также включающее другие данные, используемые при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, а БД вместе с СУБД носит название банка данных (БнД);

лингвистическое (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования

иязыками обмена данными между техническими средствами САПР;

методическое (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;

организационное (ОО), представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.

По отношению к объекту проектирования различают объ- ектно-ориентированные (объектные) и объектно-независимые (инвариантные) подсистемы. К объектным относят подсистемы, выполняющие одну или несколько проектных процедур или операций, непосредственно зависимых от конкретного объекта проектирования. К инвариантным относят подсистемы, выполняющие унифицированные проектные процедуры и операции (например, функции отработки, не зависящие от особенностей проектируемого объекта). Подсистемы состоят из компонентов, объединенных общей для данной подсистемы целевой функцией и обеспечивающих функционирование этой подсистемы.

В САПР машиностроительных отраслей промышленности принято выделять системы функционального, конструкторского и технологического проектирования. Первые из них называют системами расчетов и инженерного анализа или сис-

темами CAE (Computer Aided Engineering, автоматизирован-

28

ная система научных исследований - АСНИ). Системы конст-

рукторского проектирования называют системами CAD

(Computer Aided Design, САПР изделий – САПР И). Системы для создания производственных планов с использованием вычислительных ресурсов (определяющих последовательность операций, потребности в механизмах и инструментах, параметры раскроя, допуски, критерии контроля и т.д.) называются

CAPP (Computer Aided Process Planning, САПР технологиче-

ских процессов - САПР ТП, автоматизированные системы технологической подготовки производства – АС ТППП). Про-

ектирование технологических процессов составляет часть технологической подготовки производства и выполняется в сис-

темах CAM (Computer Aided Manufacturing).

Существуют САПР и для других областей — разработки электронных приборов, строительного проектирования.

1.4.2. Системы CAD (Computer-Aided Design)

Система CAD (Автоматизированное проектирование)

представляет собой технологию, состоящую в использовании компьютерных систем для облегчения создания, изменения, анализа и оптимизации проектов. Таким образом, любая программа, работающая с компьютерной графикой, так же как и любое приложение, используемое в инженерных расчетах, относится к системам автоматизированного проектирования. Другими словами, множество средств CAD простирается от геометрических программ для работы с формами до специализированных приложений для анализа и оптимизации. Между этими крайностями умещаются программы для анализа допусков, расчета масс-инерционных свойств, моделирования методом конечных элементов и визуализации результатов анализа. Самая основная функция CAD - определение геометрии конструкции (детали механизма, архитектурные элементы, электронные схемы, планы зданий и т.п.), поскольку геометрия определяет все последующие этапы жизненного цикла продукта. Для этой цели обычно используются системы разработки рабочих чертежей и геометрического моделирования.

29

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]