
- •Предисловие
- •Основные понятия
- •Глава 1. Анализ одномерных временных рядов
- •1.1. Анализ временного ряда на стационарность (автокорреляционная функция)
- •1.2. Компоненты временного ряда
- •1.3. Показатели точности прогноза
- •1.4. Сглаживание уровней временных рядов
- •1.5. Аналитическое выравнивание временных рядов
- •1.6. Проверка стабильности модели тренда (тест Чоу)
- •1.7. Применение фиктивных переменных при моделировании тренда
- •1.8. Сезонная декомпозиция временного ряда
- •1.9. Полиномиальные модели экспоненциально взвешенных средних
- •1.10. Моделирование стационарных временных рядов
- •1.10.1. Процессы белого шума и случайного блуждания
- •1.10.2. Процесс случайного блуждания и единичный корень
- •1.10.3. Модели скользящего среднего и процесс белого шума
- •1.10.4. Модели авторегрессии – скользящего среднего (методология Бокса – Дженкинса)
- •Глава 2. Многомерные модели временных рядов
- •2.1. Динамические модели со стационарными переменными
- •2.1.1. Модель коррекции остатков
- •2.1.2. Модель частичного приспособления
- •2.1.3. Уравнения модели с полиномиально распределённым лагом (лаги Алмон)
- •2.1.4. Уравнения модели с геометрически распределённым лагом (метод Койка)
- •2.2. Динамические модели с нестационарными переменными
- •2.2.1. Ложная регрессия
- •2.2.2. Единичные корни и коинтеграция
- •Глава 3. Векторные модели авторегрессии
- •3.1. Общие положения
- •3.2. Тест Гренджера на причинность
- •3.3. Модель коррекции остатков для нестационарных временных рядов
- •Глава 4. Панельные данные
- •4.1. Основные понятия
- •4.2. Модель с фиксированными эффектами
- •4.3. Модель со случайными эффектами
- •4.4. Фиксированные эффекты или случайные?
- •4.5. Качество подгонки панельных данных моделью
- •Библиографический список
- •Оглавление
- •Глава 1. Анализ одномерных временных рядов………….………………...5
- •Глава 2. Многомерные модели временных рядов…………… ……….…45
- •Глава 3. Векторные модели авторегрессии………………………………...64
- •Глава 4. Панельные данные…………………………………………….……76
- •680042, Хабаровск, ул. Тихоокеанская, 134, хгаэп, риц
2.1.3. Уравнения модели с полиномиально распределённым лагом (лаги Алмон)
Если в правой части уравнения (2.1) присутствует только независимая переменная со своими лаговыми значениями, то такое уравнение называется уравнением с распределённым лагом. Если максимальная величина лага ограничена (например, величиной l), то такое уравнение можно записать в виде
.
Эта модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной x, то это изменение будет влиять на значения переменной y в течение l следующих моментов времени.
Коэффициент регрессии b0 при переменной xt характеризует среднее изменение yt при изменении xt на единицу своего измерения в некоторый фиксированный момент времени t. Этот коэффициент называют краткосрочным мультипликатором.
По аналогии с моделью (2.1) сумму всех промежуточных мультипликаторов назовём долгосрочным мультипликатором и определим как
b = b0 + b1 + … +bl.
Величина b показывает изменение в долгосрочном периоде t+1 результата y под влиянием изменения на единицу независимой переменной xt.
Введём понятие относительных коэффициентов модели с распределённым лагом
βj = bj/b, j = 0,1,2,…,l.
Эти коэффициенты показывают вклад отдельного лага в суммарное влияние всех лагов. Функция βj целого аргумента называется распределением лагов. Если все коэффициенты bj имеют одинаковые знаки, то для любого j
0 < βj < 1 и =1.
В этом случае относительные коэффициенты βj являются весами для соответствующих коэффициентов bj. Каждый из них измеряет долю общего изменения результативного признака в момент времени t + j.
Зная величины βj, можно определить такие важные характеристики модели с распределённым лагомкак величины среднего лага и медианного лага. Средний лаг определяется по формуле
и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения факторной переменной в момент времени t. Средний лаг измеряет скорость реакции y на изменение x. Небольшая его величина свидетельствует об относительно быстром реагировании результата на изменение факторной переменной, тогда как высокое его значение говорит о том, что такое воздействие будет сказываться в течение длительного периода времени.
Медианный лаг (lMe)– это величина лага, для которого
0,5.
Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.
В общем случае оценить параметры уравнения модели с распределённым лагом методом наименьших квадратов представляется проблематичным. В этом случае оценке подлежат достаточно большое количество параметров в условиях мультиколлинеарности (лаговые переменные, как правило, тесно связаны друг с другом). Для решения этой проблемы обычно предполагаю, что известна структура лагов. Ш. Алмон (Almon S.) предложила считать, что зависимость величин коэффициентов такой модели от лагов является полиномиальной. В этом случае часть проблем, связанных с проблемами метода наименьших квадратов снимается.
Итак,
будем считать, что коэффициенты модели
с распределённым лагом определяются
из соотношений
(полином от величины лага j
степени к).
Тогда после подстановки этих коэффициентов
в исходное уравнение (после перегруппировки
переменных) исходное уравнение можно
заменить на уравнение от вспомогательных
переменных с коэффициентами
(эти
преобразования предлагается провести
самостоятельно). Вспомогательные
переменные являются линейными комбинациями
исходной независимой переменной и её
лаговых значений с известными
коэффициентами. Число вспомогательных
переменных равно к
(степени полинома), а поскольку это
число, как правило, значительно меньше
максимального лага (обычно не больше
4), то размерность вспомогательного
уравнения будет существенно меньше
размерности исходного уравнения. Оценив
вспомогательное уравнение, определим
,
а затем можно рассчитать значения
коэффициентов исходного уравнения по
приведённой формуле.
В EViews модель распределённых лагов рассчитывается несколько по-иному, чем описывается в эконометрической литературе. Так, зависимость коэффициентов модели от лагов имеет вид
,
(j
= 0,1,2,…,l),
где
с =
.
Введено это для того, чтобы уменьшить эффект мультиколлинеарности. На конечные результаты расчётов это введение влияния не оказывает.
При использовании метода Алмон необходимо предварительно решить две проблемы: определить максимальную величину лага и степень полинома. Обе проблемы решаются эмпирически.
При решении первой проблемы рекомендуется брать как можно большую величину лага, а потом на основании статистических критериев удалять последовательно незначимые слагаемые из уравнения модели. Аналогичные рекомендации действуют и в отношении определения степени полинома. А поскольку степень полинома, как правило, бывает не больше 4, то при компьютерных расчётах это не создаёт больших затруднений. Оценка параметров модели с распределёнными лагами реализована в большинстве статистических пакетов, и исследователю остаётся просчитать ряд вариантов и выбрать из них наиболее подходящий. Рассмотрим эту процедуру на примере эконометрического пакета EViews.
Чтобы задать в EViews расчёт модели с распределённым лагом, необходимо в спецификации уравнения регрессии задать (y с pdl(x,l,k)). Здесь у – зависимая переменная, с – константа, х – независимая переменная, l – максимальный лаг, к – степень полинома, pdl – polynomial distributed lag (полиномиально распределённый лаг). На рисунке 2.1 приведён отчёт об оценке модели pdl заданной спецификацией (y с pdl(x,5,1)), т.е. приведена оценка зависимости y от x с лагом, равным пяти годам, и степенью полинома, равной единице.
Рисунок 2.1 – Оценка параметров модели с распределённым лагом
Итак, в рассматриваемом примере уравнение с распределённым лагом в общем виде следующее:
yt = c + b0 xt + b1xt-1 + b2xt-2 + b3xt-3 + b4xt-4 + b5xt-5 + et.
Коэффициенты этого уравнения рассчитываются из соотношений bj=γ0+γ1(j-0,5) (полином 1-го порядка), (в нашем случае k=1 и c=k/2=0,5), а γ0 и γ1 определяются как оценки вспомогательного уравнения
yt = α + γ0 z0t + γ1 z1t,
где z0t и z1t – вспомогательные переменные, являющиеся линейными комбинациями текущих и лаговых значений независимой переменной.
На
рисунке 2.1 с
– это
,
PDLoj
– это
(j=1,2),
а коэффициенты bj
(j=0,1,2.3.4.5)
– это числа в последней части отчёта в
столбце Coefficient.
Левее их помещён график распределения
лагов.
Итак, в нашем примере уравнение регрессии с распределённым лагом имеет вид (с округлениями):
yt = 1,15 + 0,46xt + 0,35xt-1 + 0,24xt-2 + 0,13xt-3 + 0,02xt-4 – 0,09xt-5 + et.
В последней строке отчёта указан долгосрочный мультипликатор (Sum of Lags =1,11).
Отметим, что здесь найдено не лучшее уравнение регрессии. Свободный член уравнения с распределённым лагом незначим (Prob. для с равна 0,725), в остатках присутствует автокорреляция. Эти вопросы решаются отдельно и здесь не рассматриваются.