Добавил:
Developer Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 2 курс (СФиФТ) / ОКОНЧАТЕЛьНЫЙ.doc
Скачиваний:
51
Добавлен:
18.10.2022
Размер:
10.71 Mб
Скачать

14. (Нт1). (з). Интенсивность на экране в центре дифракционной картины от диафрагмы, на которой укладываются 3 зоны Френеля, равна l1, а при отсутствии диафрагмы равна l0. При этом:

А) l0/l1=3; *В) l0/l1=1/4; С) l0/l1=1/2; D) l0/l1=2

15. (Нт2). (з). Амплитуда волны в точке наблюдения, если на ее пути установить экран, открывающий 3,5 зоны Френеля,

А) Увеличится в 2 раза; В)Останется без изменения;

С)*Увеличится в 1,4 раза; D)Уменьшится в 1, 4 раза

16. (НТ3). (З). Плоская волна падает на плоский экран с круглым отверстием (см. рисунок) радиуса . В точке наблюдения в отверстии укладывается две зоны Френеля. В точках О и О1, смещенной на расстояние , будут наблюдаться:

А) В т. О – минимум интенсивности, в т. О1 – минимум.

В) В т. О – максимум интенсивности, в т. О1 – минимум

*С) В т. О – минимум интенсивности, в т. О1 – максимум

D) В т. О – максимум интенсивности, в т.О1 – максимум.

1 7. (НТ3). (З). Плоская волна падает на плоский экран с круглым отверстием (см. рисунок) радиуса . Из точки наблюдения в отверстии видна одна зона Френеля. В т.О и точках О1 и О2, смещенных относительно начала на расстояние , соотношение интенсивностей:

18. (НТ1). (З). На рис приведена векторная диаграмма изменения амплитуды колебаний в точке наблюдения волны при постепенном открытии зон Френеля. - интенсивность волны. Для точки наблюдения открыто три зоны Френеля. Амплитуда поля равна:

19. (НТ1). (З). На рис приведена векторная диаграмма изменения амплитуды колебаний в точке наблюдения волны при постепенном открытии зон Френеля. - интенсивность волны. Для точки наблюдения открыто четыре зоны Френеля. Амплитуда поля равна :

20. (НТ1). (З). Распределение интенсивности излучения на приемном экране после прохождения плоской волны сквозь дифракционную решетку описывают формулой

. - это:

А) максимальное значение интенсивности излучения в центре одной щели;

В) максимальное значение интенсивности излучения в центре экрана ( ) от одной щели;

С) максимальное значение интенсивности излучения в центре экрана ( ) от всех щелей;

*D) интенсивность падающей на дифракционную решетку волны.

21. (НТ1). (З). Распределение интенсивности излучения на приемном экране после прохождения плоской волны сквозь дифракционную решетку описывают формулой

. а и d - это:

А) а- расстояние между щелями решетки, d – ширина непрозрачных для волны участков в решетке;

В) а - постоянная решетки, d - ширина щелей;

*С) а - ширина щелей, d - постоянная решетки;

D) а - ширина непрозрачных участков между щелями решетки, d - постоянная решетки.

22. (НТ2). (З). Распределение интенсивности излучения на приемном экране после прохождения плоской волны сквозь дифракционную решетку описывают формулой

. Первый дробный сомножитель в формуле описывает:

А) распределение амплитуды поля в результате дифракции волны на одной щели в зависимости от угла , под которым видна решетка из рассматриваемой точки точки наблюдения на экране;

*В) распределение квадрата амплитуды поля в результате дифракции волны на одной щели в зависимости от угла , под которым видна решетка из рассматриваемой точки наблюдения на экране;

С) зависимость интенсивности излучения, попадающего на экран, от угла φ и а отдельных щелей решетки, находящихся на расстоянии а от ее центра, излучение от которых падает на центр экрана под углом φ;

D) зависимость интенсивности излучения в центре экрана от угла φ и а отдельных щелей решетки, находящихся на расстоянии а от ее центра, излучение от которых падает на центр экрана под углом φ.

23. (НТ1). (З). Распределение интенсивности излучения на приемном экране после прохождения плоской волны сквозь дифракционную решетку описывают формулой

. Второй дробный сомножитель в формуле учитывает, что:

*А) амплитуда поля на каждом элементе приемного экрана равна суперпозиции амплитуд от каждой из N щелей;

В) интенсивность поля на каждом элементе приемного экрана равна суперпозиции амплитуд от каждой из N щелей ( );

С) амплитуда поля на каждом элементе экрана равна произведению амплитуд от каждой из N щелей, что приводит к увеличению интенсивности в N2 раз;

D) интенсивность поля на каждом элементе экрана равна произведению интенсивностей от каждой из N щелей, что приводит к росту интенсивности .

24. (НТ2). (З). Распределение интенсивности излучения на приемном экране после прохождения плоской волны сквозь дифракционную решетку описывают формулой

. Углы, вдоль которых направлены лучи с максимальной интенсивностью (главные максимумы), определяются из соотношений:

25. (НТ2). (З). Распределение интенсивности излучения на приемном экране после прохождения плоской волны сквозь дифракционную решетку описывают формулой

. Основные главные максимумы

излучения лежат в интервале углов:

26.(НТ1).(З). Угловая дисперсия спектрального прибора (дифракционной решетки и т.п.):

А) величина, определяющая угловое «расстояние» между ближайшими главными максимумами;

*В) коэффициент пропорциональности между угловым смещением дифракционного максимума при изменении длины волны излучения ( );

С) ) коэффициент пропорциональности между угловым смещением дифракционного максимума при изменении частоты излучения ( );

D) угловая ширина главных дифракционных максимумов с заданной длиной волны λ.

27. (НТ1). (З). Известно, что условие главных максимумов для дифракционной решетки определяется соотношением . Угловая дисперсия равна:

28. (НТ1). (З). Критерий Релея для разрешения двух спектральных линий в дифракционной решетке соответствует условию, при котором

*А) главные максимумы одного порядка близких линий сдвинуты так, что максимум одной линии совпадает с ближайшим минимумом другой линии;

В) главный максимум линии первого порядка одной расположен посередине между максимумами 1-го и 2-го порядка другой;

С) главные максимумы нулевого порядка линий сдвинуты относительно друг друга на угол ;

D) главные максимумы нулевого порядка линий сдвинуты относительно друг друга на угол .

29. (НТ2). (З). Разрешающая способность (R) спектрального прибора (разрешающая сила) определяется соотношением:

А) - разность длин волн двух линий, удовлетворяющих критерию Релея;

В) - разность длин волн двух линий, удовлетворяющих критерию Релея;

*С) - разность длин волн двух линий, удовлетворяющих критерию Релея;

D) - разность длин волн, при которых минимум линии одного порядка совпадает с максимумом другой линии следующего порядка.

30. (НТ1). (З). Для двух спектральных линий в дифракционной решетке главный максимум m-го порядка, угол для которого определяется соотношением , совпадает с ближайшим минимумом для второй линии, для которого . Разрешающая способность (R) дифракционной решетки равна:

Соседние файлы в папке Физика 2 курс (СФиФТ)