Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1304333690_116_maevec.ru.doc
Скачиваний:
26
Добавлен:
10.07.2022
Размер:
13.83 Mб
Скачать

5. Динамика продольного возмущенного движения вс

В разделе 4 получены формулы (4,5), описывающие продольное возмущенное движение. Принимается β=γa=0, m(t)=const, изменение аэродинамических сил по высоте мало,

, , ;

пренебрегается изменением по высоте ρ(H), p(H), a(H), полагая момент тангажа сбалансированным в опорном движении . Для упрощений уравнений возмущенного движения целесообразно перейти от производных сил к производным перегрузок, учитывая что

nya= (P sin(α+φp)+Ya); nxa= (P cos(α+φp)-Xa);

при (γa=0, β=0): nya=nyk; nxa=nxk; M= ; .

Проделаем преобразования на примере первого уравнения и уравнения для описания опорного движения . Уравнение в отклонениях от опорного (возмущенного ) запишем в виде (принимая во внимание: )

Проделав аналогичные преобразования можно уравнения (4.5) представить в матричной форме.

, (5.1)

где

; ; ; ; ; (5.2)

a11 = g nxkV = nxkM M; a21 = (nykM Mnyk + cos θ); a12 = g(nxkθcos θ)=g(-nxkαcos θ);

a22 = (nykθ + sin θ) = (-nykα + sin θ); a14 = = g nxkα; a24 = = nykα;

Dz= ; a31 = (2mz + 2mpz1 + mzM M + mpz1MM); a32 = Dz mzθ; a33 = Dz mzωz;

a34 = Dz ; a51 = sin θ; a52 = V cos θ; a61 = cos θ; a62 = -V sin θ; b11 = g ;

b21 = ; b31 = Dz ; b22 = nykδв; b32 = Dz mzδв.

В системе (5.1) параметры ΔH и ΔL не входят в правые части четырех первых уравнений и нe влияют на изменение соответствующих фазовых переменных, поэтому могут рассматриваться независимо от двух последних.

5.1. Собственное продольное возмущенное движение вс. Условия устойчивости опорного движения

В опорном режиме полета управление u˚(t) = (P˚(t), δb˚(t)) задано и изменение Рассмотрим уравнения продольного собственного возмущенного движения (см. (5.1), без включения строк и столбцов, соответствующих ΔH и ΔL).

(5.3)

Характеристический многочлен

|A - λE| = |λE - A| = 0, (5.4)

или

.

Раскрывая определитель по последней строке, получаем:

λ4 + a3 λ3 + a2 λ2 + a1 λ + a0 = 0, (5.5)

где: a3 = -a11 – a22 – a33; a2 = a11 a22 + a22 a33 + a11 a33 – a21 a12 + a34;

a1 = - a11 a34 – a22 a34 + a31 a14 + a32 a24;

a0 = a11 a22 a34 + a21 a32 a14 + a31 a12 a24 – a31 a14 a22 – a21 a12 a34 – a11 a32 a24.

Для асимптотической устойчивости в соответствии с условиями Рауса – Гурвица должно соблюдаться:

a0>0; a1>0; a2>0; a3>0; R = a1 a2 a3 – a12 – a0 a32>0.

Возмущенное движение в целом по всему вектору Δy = (ΔV, Δθ, Δωz, Δ , ΔH, ΔL) можно проанализировать по уравнениям для ΔH и ΔL, т.е. пусть = V Δθ; = ΔV. Интегрированием этих уравнений получаем:

ΔH(t) = V ; (ΔH0≠0)

ΔL(t) = ; (ΔL0≠0)

Откуда видно, что если ВС асимптотически устойчиво по Δθ(t) и ΔV(t), т.е. при t→∞ Δθ(t)→0, ΔV(t)→0, то при этих условиях ΔH(t)→ΔH0 и ΔL(t)→ΔL0 и движение не будет асимтотически устойчивым, но может быть просто устойчивым по Ляпунову при малых ΔH0 и ΔL0.

Соседние файлы в предмете Конструирование летательных аппаратов