
- •Возникновение и развитие нейропсихологии. Роль отечественных ученых.
- •Разделы нейропсихологии: клиническая и экспериментальная нейропсихология
- •Разделы нейропсихологии: реабилитационная нейропсихология, психофизиологическая нейропсихология, нейропсихология детского и старческого возраста.
- •Нейропсихологический подход к изучению мозга.
- •Нейропсихологический подход к изучению проблемы биологической и социальной детерминации психики человека.
- •Теория системной динамической локализации высших психических функций.
- •Специфические признаки высших психических функций (социальный генез, опосредованный характер, связь с речевой системой, прижизненное формирование и т.Д.).
- •Социализированы;
- •Вербализованы;
- •Произвольны по способу осуществления.
- •Высшие психические функции как функциональные системы (приспособительный характер, иерархическое строение, пластичность, саморегуляция, принцип прямых и обратных связей и др.).
- •Принцип эквипотенциальности мозга и принцип узкого локализационизма.
- •Горизонтальная и вертикальная организация мозга как субстрата психических процессов. Роль корковых и подкорковых структур.
- •Взаимодействие и динамика систем мозговой организации
- •Формы строения и деятельности систем мозговой организации
- •Значение концепции академика о.С. Адрианова
- •Структурно-функциональная модель мозга как субстрата психической деятельности (а.Р. Лурия).
- •Энергетический блок - блок регуляции активности мозга.
- •Физиологические и клинические данные о функциональной асимметрии мозга.
- •Концепция доминантности левого полушария (у правшей).
- •Моторные, сенсорные и вегетативные асимметрии. Профиль латеральной организации мозга (пло).
- •Зрительные агнозии. Предметная агнозия.
- •Оптико-пространственная агнозия.
- •Буквенная (символическая) агнозия.
- •Симультанная агнозия.
- •Лицевая агнозия.
- •Цветовая агнозия.
- •Особенности нарушения зрительного восприятия при поражении верхних и нижних отделов "широкой зрительной сферы" левого и правого полушарий (у правшей).
- •Гностические слуховые нарушения при поражении вторичных корковых полей височных отделов левого и правого полушарий мозга (у правшей).
- •Слуховые агнозии, амузия, аритмия, нарушения слуховой памяти. Нарушения фонематического слуха.
- •Сомато-топическая организация [картинку прикрепила в конец, чтобы отдельно распечатать] Сенсорные расстройства
- •Гностические расстройства
- •Виды тактильных агнозий: предметная (астериогноз) буквенная, цифровая (тактильная алексия), агнозия пальцев, агнозия текстуры объекта. Соматоагнозия (нарушение схемы тела). Агнозия позы.
- •Нарушения мнестической деятельности при повреждении лобных долей мозга. Нарушения семантической памяти.
- •Нарушения внимания при локальных поражениях мозга.
- •Нарушения наглядно-образного и вербально-логического мышления. Структурные и динамические нарушения интеллектуальной деятельности.
- •Нарушения мышления при поражении лобных долей мозга. Интеллектуальные персеверации, стереотипы, неучет собственных ошибок. Нарушение динамического аспекта интеллектуальной деятельности.
- •Нарушение мышления при поражении задних отделов мозга. Нарушения конструктивной деятельности. Нарушения мышления при поражении височных отделов коры.
- •Нарушения эмоционально-личностной сферы при локальных поражениях мозга.
- •1. Лобные отделы мозга
- •2. Височные области:
- •3. Диэнцефальные области: гипофизарные, гипоталамические.
- •Строение хромосом: хроматида, хромомеры, эухроматические и гетерохроматические районы хромосом. Методы окраски хромосом. Морфология хромосом в ходе митоза и мейоза.
- •Молекулярная организация хромосом. Компоненты хроматина. Уровни упаковки хроматина, строение нуклеосом.
- •Цели, принципы и методы генетического анализа. Основы гибридологического метода, его разрешающая способность.
- •Закономерности наследования при моногибридном скрещивании. I и II законы г. Менделя. Аллельные гены и типы их взаимодействий.
- •Неаллельные гены, типы их взаимодействия. Комплементарность как тип взаимодействия неаллельных генов.
- •Доминантный и рецессивный эпистаз как типы взаимодействия неаллельных генов. Особенности наследования количественных признаков (полигенное наследование).
- •Генотип как сложная система аллельных и неаллельных взаимодействий генов. Плейотропное действие генов. Пенетрантность и экспрессивность.
- •Хромосомное определение пола, его типы. Признаки, сцепленные с полом, зависимые от пола и ограниченные полом.
- •Особенности наследования при сцеплении генов. Группы сцепления. Определение групп сцепления генов у дрозофилы и человека. Неполное сцепление и кроссинговер.
- •Картирование генов на основе данных цитогенетического анализа. Цитологические карты хромосом, их сопоставление с генетическими картами.
- •Формы изменчивости (фенотипическая и генотипическая). Виды генотипической изменчивости. Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •Мутационная изменчивость. Принципы классификации мутаций. Характеристика основных классов мутаций. Мутагенные факторы, их природа.
- •Классификация генных мутаций. Общая характеристика молекулярной природы их возникновения.
- •Хромосомные перестройки, их классификация. Особенности мейоза при различных типах перестроек.
- •Геномные изменения: полиплоидия, анеуплоидия.
- •Модификационная изменчивость. Формирование признаков как результат взаимодействия генотипа и факторов среды. Норма реакции генотипа.
- •Популяции, их виды. Понятие идеальной популяции. Особенности популяций человека. Коэффициент инбридинга. Генетическая структура инбредной популяции.
- •Популяционно-статистический метод в медицинской генетике: его основа и задачи. Уравнение Харди-Вайнберга как основной закон популяционной генетики.
- •Генетический груз популяции, его влияние на генетическую структуру популяций.
- •Клинико-генеалогический метод: его этапы, возможности.
- •3. Генетический анализ родословной.
- •Близнецовый метод, его характеристика и область применения. Конкордантность и дискордантность. Коэффициент наследуемости.
- •Биохимические методы, применяемые для диагностики наследственных заболеваний и выявления носителей патологических генов.
- •Цитогенетический и молекулярно-цитогенетические методы: их суть, возможности, ограничения.
- •Роль наследственности в патологии. Особенности клинических проявлений наследственной патологии, её классификация. Врождённые пороки развития.
- •Этиология и цитогенетика хромосомных болезней, их классификация. Зависимость тяжести болезни от выраженности хромосомного дисбаланса. Полные и мозаичные формы хромосомных болезней.???
- •Генетические основы канцерогенеза. Онкогены и гены супрессоров опухолей.
- •Профилактика наследственных болезней: её виды (первичная, вторичная и третичная), уровни, пути и формы проведения.
- •Более полное описание видов профилактики!!!
- •Медико-генетическое консультирование (мгк): задачи консультирования, его виды, организация службы мгк в России. Принципы оценки генетического риска.
Строение хромосом: хроматида, хромомеры, эухроматические и гетерохроматические районы хромосом. Методы окраски хромосом. Морфология хромосом в ходе митоза и мейоза.
Хромосомы состоят из двух хроматид, объединенных первичной перетяжкой. По положению центромеры хромосомы делятся на метацентрические (равноплечие), субметацентрические (неравноплечие), акроцентрические (центромера лежит у одного из концов хромосомы, последняя представляет собой палочку с очень коротким или даже незаметным вторым плечом), и телоцентрические палочковидные хромосомы с центромерой, расположенной на проксимальном конце. Хромомеры, по мнению одних исследователей, представляют собой плотно спирализованные участки, по мнению других — уплотнения нуклеопротеидного материала. Промежутки между хромомерами называются межхромомерными нитями.
Эухроматин, активный хроматин, участки хроматина (вещества хромосом), сохраняющие деспирализованное состояние элементарных дезоксирибонуклеопротеидных нитей (ДНП) в покоящемся ядре, т. е. в интерфазе (в отличие от других участков — гетерохроматина). Эухроматин отличается от гетерохроматина также способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков. В нём, помимо ДНП, имеются рибонуклеопротеидные частицы (РНП-гранулы), которые служат для завершения созревания РНК и переноса ее в цитоплазму. Эухроматин содержит большинство структурных генов организма.
Гетерохроматин (от гетеро… и греч. chroma — цвет), участки хромосом, остающиеся в промежутке между делениями клетки, т. е. в интерфазе, уплотненными (в отличие от др. участков — эухроматина). Гетерохроматин иногда тесно связан с ядрышком, образуя вокруг него подобие кольца или оболочки. Во время митоза Гетерохроматин окрашивается сильнее или слабее, чем эухроматин (явление положительного или отрицательного гетеропикноза). Гетерохроматин особенно характерен для половых хромосом многих видов животных. Гетеропикнотические участки удаётся получить в эксперименте, например при действии низкой температуры. Полагают, что Гетерохроматин не содержит генов, контролирующих развитие организма.
Методы окраски бывают простыми, дифференциальными, флюоресцентными. Наиболее распространен метод окраски по Гимзе, или простая окраска (в русскоязычной литературе распространен также термин «рутинная окраска»). Краситель Гимзы окрашивает все хромосомы равномерно по всей длине. При этом контурируются центромера, спутники (иногда со спутничными нитями) и вторичные перетяжки. Механизм связывания красителя Гимзы хромосомами неясен.
Стадии митоза.
Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно — одна незаметно переходит в другую.
В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть — прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).
В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).
В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).
В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).
Стадии мейоза
Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n).
В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).
В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).
В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.
В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).
Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.
В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).
Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.