
- •Введение
- •Проектирование металлорежущих станков и станочных систем
- •1. Процесс проектирования металлорежущих станков
- •1.1. Общие сведения о металлообрабатывающих
- •Станках
- •1.2. Исходные данные для проектирования мрс
- •1.3. Этапы проектирования станков
- •1.4. Проектные критерии
- •1.5. Автоматизации проектирования
- •Математической модели
- •1.6. Основные методические принципы автоматизированного проектирования
- •1.7. Структура сапр мрс
- •1.8. Оптимизация проектных решений
- •1.9. Связь конструирования с технологией производства
- •2. Компоновка станков
- •2.1. Исходные данные к выбору компоновки
- •2.2. Структурный анализ базовых компоновок
- •С подвижной стойкой
- •2.3. Выбор компоновки
- •2.4. Компоновка станочных систем
- •2.5. Унификация и агрегатирование
- •3. Выбор технических характеристик станков
- •3.1. Уточнение служебного назначения станков
- •3.2. Диапазон рабочих скоростей
- •В центрах на токарных станках больших размеров:
- •3.3. Особенности ступенчатого регулирования
- •3.4. Скорости вспомогательных движений
- •3.5. Мощность привода
- •3.6. Выбор расчетных нагрузок
- •4. Проектирование и расчет приводов станков
- •4.1. Приводы главного движения
- •4.1.1. Назначение приводов главного движения
- •4.1.2. Виды приводов
- •4.1.3. Требования к приводам
- •4.1.4. Виды и способы регулирования
- •4.1.5. Особенности проектирования и расчета привода главного движения станков
- •4.1.6. Определение мощности электродвигателя
- •4.2. Приводы подачи
- •Характеристики основных выходных звеньев приводов подачи
- •5. Шпиндельные узлы
- •6. Корпусные детали
- •7. Направляющие станков
- •7. Ходовые винты и гайки
- •8. Станочные системы
- •8.1. Классификация и основные типы станочных систем
- •8.2. Классификация и структура гибких производственных систем
- •8.3. Основные технико-экономические показатели
- •Часть 3
- •394026 Воронеж, Московский просп., 14
6. Корпусные детали
К корпусным деталям станков относят: станины, стойки, траверсы, проставочные плиты, корпуса силовых головок, коробок скоростей, подач, задних бабок, суппортов, столов, планшайб и др. Основное требование, предъявляемое к корпусным деталям: возможность в процессе работы станка и в течение длительного времени сохранять неизменность относительных положений базовых поверхностей, т. е. неизменность геометрической формы. Данные требования обеспечиваются высокой жесткостью и виброустойчивостью конструкций, износостойкостью направляющих. Это достигается с помощью как конструктивных способов, так и технологическими методами.
Оценить работоспособность корпусных деталей можно на основе учета максимальных усилий, действующих в процессе работы станка. Поскольку корпусные детали и в первую очередь станины находятся под действием сложной системы переменных сил и имеют различную толщину стенок, ребра жесткости, перегородки, окна и т. п., то расчет деформаций таких деталей представляет определенные трудности. Для удобства расчета сложные формы корпусных деталей можно представить в виде ферм, балок упрощенной конструкции. Это дает возможность оценить различные варианты конструкций, напряжений и деформаций в них. Наиболее важное значение имеет проверка жесткости станины, стоек, траверс на изгиб и кручение. Для поверочных расчетов составляют расчетную схему с указанием направления и значений действующих нагрузок, которые и являются исходными для расчета базовых узлов и механизмов станка.
Из всех приведенных корпусных деталей наиболее ответственной является станина, на базовых поверхностях которой располагаются различные подвижные и неподвижные узлы и механизмы станка: суппорты, стойки, столы, приводы и т. п. В основе конструкции станин, несмотря на большое разнообразие их форм, лежат некоторые общие принципы, обусловленные конструктивными, технологическими и прочностными требованиями. Конструкция станины должна обеспечить возможность рационального расположения на ней всех необходимых узлов и механизмов, а также удобства их монтажа и разборки. Технологичность конструкции должна обеспечить возможность изготовления станины с требуемой точностью геометрической формы и качеством базовых поверхностей при высокой производительности их обработки.
Наивыгоднейший профиль станин по конструктивным соображениям и прочностным характеристикам — сечение в форме полого прямоугольника или кольцевого профиля (рис. 21, а, б, в). Такие профили наиболее характерны для вертикальных станин МЦС. Однако не всегда удается выдержать по всей длине станины замкнутый профиль, что связано с необходимостью обеспечить удобство удаления стружки, компактное расположение различных механизмов, узлов и агрегатов, сборку и демонтаж станка. Поэтому часто форма профиля станины имеет открытый вид, а для повышения ее жесткости применяют ребра жесткости, двойные стенки и т. п. (рис. 21, г, д,е). Жесткость станины значительно повышается, если полая внутренняя часть выполнена с перегородками (рис. 22). Расчет деформаций станины с учетом особенностей их конструкций показал существенное влияние формы ребер и их расположения на жесткость станины при изгибе в горизонтальной плоскости и меньшее влияние при изгибе станины в вертикальной плоскости.
Рис. 21
Рис. 22
При расчете деформаций станин необходимо учитывать также конструктивные особенности различных компоновок станков. Так, при обработке заготовок на МЦС в отличие от специальных станков формообразование поверхности и нагружение станка силами резания происходит с использованием большой номенклатуры и типов инструмента, выполняющих различные операции в широкой области рабочего поля станка. Кроме того, эти станки оснащены дополнительными узлами (поворотными загрузочными столами, магазинами инструментов и др.), которые увеличивают крутильные и изгибающие моменты, действующие на станину станка. Все это усложняет проведение расчета деформаций станины.
При упрощенных расчетах станин можно вместо деформаций определять наибольшие напряжения, которые не должны превосходить 100...200 Н/мм2. Такие низкие значения напряжений диктуются условием длительного сохранения точности станин и косвенно учитывают условие жесткости.
В последнее время при расчетах конструкций корпусных деталей сложных металлорежущих систем все шире используют ЭВМ. Для выбора оптимальной несущей системы станка составляют oценочные математические модели. Количественными — оценочными критериями при этом служат определенные значения параметров точности, жесткости, виброустойчивости.