Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники 60136.doc
Скачиваний:
12
Добавлен:
01.05.2022
Размер:
1.13 Mб
Скачать

ФГБОУВПО «Воронежский государственный

технический университет»

В.И. Корнеев В.М. Пачевский

ПРОЕКТИРОВАНИЕ ИНСТРУМЕНТОВ

И ОБОРУДОВАНИЯ

Часть 3

Утверждено Редакционно-издательским советом

университета в качестве учебного пособия

Воронеж 2011

УДК 621.7.669

Корнеев В.И. Проектирование инструментов и оборудования: учеб. пособие / В.И. Корнеев, В.М. Пачевский. Воронеж: ФГБОУВПО «Воронежский государственный технический университет», 2011. Ч. 3. 140 с.

В учебном пособии представлены основные материалы по разделу «Проектирование металлорежущих станков и станочных систем» дисциплины «Проектирование инструментов и оборудования», включающие следующие темы: этапы проектирования станков; вопросы оптимизации проектных решений; компоновка станков; выбор технических характеристик станков; приводы главного движения и подач; классификация и основные типы станочных систем и другие вопросы. Пособие предназначено для студентов специальности 230104 «Системы автоматизированного проектирования» очной и заочной форм обучения и соответствует рабочей программе дисциплины «Проектирование инструментов и оборудования».

Учебное пособие подготовлено в электронном виде в текстовом редакторе MS WORD и содержится в файле «Пособие ПИО Ч3».doc.

Табл. 2. Ил. 41. Библиогр.: 11 назв.

Научный редактор профессор В.М. Пачевский

Рецензенты:

кафедра естественных дисциплин Воронежского государственного университета инженерных технологий (зав. кафедрой д-р техн. наук, проф. А.С. Борсяков),

д-р техн. наук, проф. М.И. Чижов

© Корнеев В.И., Пачевский В.М., 2011

© Оформление. ФГБОУВПО

«Воронежский государственный

технический университет», 2011

Введение

Учебное пособие разработано в связи с введением дисциплины «Проектирование инструментов и оборудования» в учебный план подготовки инженеров по специальности 230104 «Системы автоматизированного проектирования». Изучение этой дисциплины должно дать будущим специалистам сведения, необходимые при разработке современных технологических процессов и проектиро­вании станков и инструментов.

Учебное пособие, подготовлено к изданию в электронной версии в трех частях:

  1. Проектирование режущих ин­струментов;

  2. Проектирование технологической оснастки;

  3. Проектиро­вание металлорежущих станков и станочных систем.

В первой части рассмотрены: инструментальные материалы; основные принципы работы и конструктивные элементы режущих инструментов; общие вопросы конструирования режущих инструментов; расчет и конструирование токарных резцов, осевых инструментов, фрез, резьбовых, зуборезных и других инструментов.

Во второй части рассматриваются виды технологической оснастки и методы ее проектирования; принципы расчета точности приспособлений, сил закрепления; выбор силовых устройств; вопросы проектирования вспомогательного инструмента и загрузочно-ориентирующих устройств.

В третьей части рассмотрены этапы проектирования станков; вопросы оптимизации проектных решений; компоновка станков; выбор технических характеристик станков; приводы главного движения и подач; классификация и основные типы станочных систем и другие вопросы.

Проектирование металлорежущих станков и станочных систем

1. Процесс проектирования металлорежущих станков

1.1. Общие сведения о металлообрабатывающих

Станках

Классификация металлообрабатывающих станков. Металлообрабатывающий станок — это машина, предназначенная для обработки заготовок в целях образования заданных поверхностей путем снятия стружки или путем пластической деформации. Обработка производит­ся преимущественно путем резания лезвийным или абразивным инс­трументом. Получили распространение станки для обработки заготовок электрофизическими методами. Станки применяют также для выглаживания поверхности детали, для обкатывания поверхности роликами. Металлообрабатывающие станки осуществляют резание неметалличе­ских материалов, например, дерева, текстолита, капрона и других пластических масс. Специальные станки обрабатывают также керами­ку, стекло и другие материалы.

Металлообрабатывающие станки классифицируют по различным признакам, в зависимости от вида обработки, применяемого режущего инструмента и компоновки. Все серийно выпускаемые станки разде­лены на девять групп (токарные; сверлильные и расточные; шлифовальные и доводочные; комбинированные; зубо- и резьбообрабатывающие; фрезерные; строгальные, долбежные и протяжные; отрезные; разные), в каждой группе предусмотрены девять типов.

Станки одного и того же типа могут отличаться компоновкой (например, фрезерные универсальные, горизонтальные, вертикаль­ные), кинематикой, т. е. совокупностью звеньев, передающих движе­ние, конструкцией, системой управления, размерами, точностью обработки и др.

Стандартами установлены основные размеры, характеризующие станки каждого типа. Для токарных и круглошлифовальных станков это наибольший диаметр обрабатываемой заготовки, для фрезерных станков — длина и ширина стола, на который устанавливаются заготовки или приспособления, для поперечно-строгальных станков — наибольший ход ползуна с резцом.

Группа однотипных станков, имеющих сходную компоновку, кинематику и конструкцию, но разные основные размеры, составляет размерный ряд. Так, по стандарту, для зубофрезерных станков общего назначения предусмотрено 12 типоразмеров с диаметром устанавлива­емого изделия от 80 мм до 12,5 м.

Конструкция станка каждого типоразмера, спроектированная для заданных условий обработки, называется моделью. Каждой модели присваивается свой шифр — номер, состоящий из нескольких цифр и букв. Первая цифра означает группу станка, вторая — его тип, третья цифра или третья и четвертая цифры отражают основной размер станка. Например, модель 16К20 означает: токарно-винторезный станок с наибольшим диаметром обрабатываемой заготовки 400 мм. Буква между второй и третьей цифрами означает определенную модерниза­цию основной базовой модели станка.

По степени универсальности различают следующие станки:

— универсальные, которые используют для изготовления деталей широкой номенклатуры с большой разницей в размерах. Такие станки приспо­соблены для различных технологических операций;

— специализированные, которые предназначены для изготовления однотипных деталей, например, корпусных деталей, ступенчатых валов сходных по форме, но различных по размеру;

— специальные, которые предназначены для изготовления одной определенной детали или детали одной формы с небольшой разницей в размерах.

По степени точности станки разделены на 5 классов:

Н — станки нормальной точности, П — станки повышенной точности, В — станки высокой точности, А — станки особо высокой точности, С — особо точные или мастер-станки. В обозначение модели может входить буква, характеризующая точность станка: 16К20П — токарно-винторезный станок повышенной точности.

По степени автоматизации выделяют станки-автоматы и полуавто­маты. Автоматом называют такой станок, в котором после наладки все движения, необходимые для выполнения цикла обработки, в том числе загрузка заготовок и выгрузка готовых деталей, осуществляется автоматически, т. е. выполняются механизмами станка без участия оператора.

Цикл работы полуавтомата выполняется также автоматически, за исключением загрузки-выгрузки, которые производит оператор, он же осуществляет пуск полуавтомата после загрузки каждой заготовки.

С целью комплексной автоматизации для крупносерийного и мас­сового производства создают автоматические линии и комплексы, объединяющие различные автоматы, а для мелкосерийного производ­ства — гибкие производственные модули (ГПМ). Автоматизация мелкосерийного производства деталей достигается созданием станков с программным управлением.

По массе станки подразделяются на легкие — до 1 т, средние — до 10 т, тяжелые — свыше 10 т. Тяжелые станки делят на крупные — от 16 т до 30 т, собственно тяжелые — от 30 до 100 т, особо тяжелые — свыше 100 т.

Технико-экономические показатели станков. Для оценки качества станков пользуются системой технико-экономических показателей, наиболее важными из которых являются точность, производитель­ность, надежность, экономическая эффективность, безопасность и удобство обслуживания. Имеют также значение универсальность, сте­пень автоматизации, материалоемкость, габаритные размеры, патен­тоспособность и другие показатели.

Точность станка характеризуется его способностью обеспечить форму, размеры, взаимное расположение с допустимыми отклонени­ями, а также определенную шероховатость обработанных поверхностей изделия.

Производительность станка оценивают чаще всего числом деталей, которые можно изготовить в единицу времени при соблюдении требо­ваний к точности (штучная производительность). Помимо штучной производительности пользуются также понятием «производительность резания». Она измеряется в см3/мин. Штучная производительность зависит от производительности резания и затрат времени на холостые ходы и на вспомогательные операции, несовмещенные во времени с обработкой, например — на загрузку заготовок или выгрузку деталей.

Повышение производительности станка достигается прежде всего увеличением скорости движения, глубины резания, числа одновремен­но работающих инструментов, автоматизацией цикла работы.

Надежность станка является его свойством сохранять при правиль­ной эксплуатации точность и производительность в заданных пределах, а также сохранять свои качества при правильном хранении и транс­портировке. Надежность станка характеризуется рядом показателей. Экономическая эффективность определяется сравнением приведен­ных затрат для нового и заменяемого станка. Приведенные затраты включают в себя себестоимость продукции, изготовляемой на станке, и единовременные капитальные вложения (стоимость оборудования, здания и др.). Экономическая эффективность зависит в первую очередь от производительности станка. Повышение точности станка выгодно; так как благодаря этому устраняется ручная доводка, повышается долговечность или улучшаются другие эксплуатационные качества изготовляемых деталей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]