Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ ПО ГИСТОЛОГИИ.docx
Скачиваний:
27
Добавлен:
28.11.2021
Размер:
505.81 Кб
Скачать

Патология митоза. Анеуплоидные клетки

Причинами патологии митоза могут служить 1) понижение температуры или воздействие колхицином; 2) увеличение количества центросом и 3) хромосомная абберация.

Понижение температуры и воздействие колхицином вызывают распад веретена деления клетки.

Увеличение количества центросом сопровождается увеличением количества веретен деления и образованием 3 и более дочерних клеток с анеуплоидным набором хромосом.

Хромосомная абберация возникает при воздействии на ткань ультафиолетовыми или радиоактивными лучами. Во время анафазы митоза часть такой поврежденной хромосомы может отделиться от ее плеча и после телофазы окажется в одной из дочерних клеток. Этот обломок хромосомы окружен нуклеолеммой и представляет собой "микроядро". Хромосомная аберрация может проявляться в том, что сестринские хромосомы могут склеиться друг с другом. В таком случае при расхождении дочерних хромосом вторичная перетяжка одной из них будет смещаться к одному полюсу, второй - другому. В результате этого при расхождении дочерних звезд эта пара хромосом займет положение вдоль оси веретена деления. В таком случае дочерние звезды будут соединены "мостиком". Во всех случаях хромосомной аберрации содержание хромосом в ядре будет анеуплоидным.

Амитоз. Этот тип деления характеризуется тем, что сначала появляется перетяжка ядра, которая делит ядро не обязательно на абсолютно равные части, затем перетяжкой разделяется цитоплазма. При амитозе хромосомный материал ядра материнской клетки может распределяться неравномерно между дочерними клетками. Этим амитоз принципиально отличается от митоза.

Прямым делением разделяются клетки, которые нельзя считать нормальными. Такое деление тоже считается ненормальным.

ПОЛИПЛОИДИЯ. ЭНДОРЕПРОДУКЦИЯ

Полиплоидия - это процесс увеличения количества хромосом в ядре клетки. В результате этого процесса образуются полиплоидные клетки.

В процессе полиплоидии задействованы 2 механизма: 1) блокирование одной из фаз митоза; 2) нарушение цитотомии во время телофазы. Рассмотрим 1-й механизм, т. е. блокирование периода G-2, профазы или метафазы. При этом неразделившаяся клетка вступает в период G-1 с тетраплоидным набором хромосом (4n), потом в период S, после которого в ней будет 8с ДНК и 8n хромосом. Затем эта клетка вступает в профазу, потом в метафазу. В метафазной звезде будет 8n. Затем во время анафазы в расходящихся дочерних звездах будет по 4n хромосом. После телофазы в дочерних клетках будут тетраплоидные ядра.

2-й механизм образования полиплоидных клеток, наблюдается при нарушении цитотомии - после того, как произошла анафаза, клетка вступила в телофазу, сформировались ядра, но цитотомии материнской клетки не произошло. В каждом из 2 ядер неразделившейся клетки содержится по 2n и 2с. Когда эта клетка вступит в период G1, затем в период S, то в его конце в каждом ядре неразделившейся клетки окажется по 4n и 4с. Потом эта клетка вступает в профазу, затем в метафазу. В формирующуюся материнскую звезду от каждого ядра поступит по 4n хромосом, т.е. в материнской звезде будет 8п.При расхождении дочерних звезд во время анафазы в каждой такой звезде будет по 4n хромосом. После телофазы в каждой дочерней клетке будет тетраплоидное ядро, т. е. в каждом ядре будет содержаться по 4n хромосом.

В каких органах имеются полипдоидные клетки? В клетках печени - гепатоцитах, мегакариоцитах красного костного мозга, в гландулоцитах ацинусов слюнных желез, поджелудочной железы, в пигментном слое сетчатки глаза. При этом ядро может содержать 4n, 8n, 16n, 32n. Резко выраженная полиплоидия особенно характерна для мегакариоцитов красного костного мозга.

Эндорепродукция - это последовательное многократное удвоение ДНК в результате чего увеличивается набор хромосом, при этом хромосомы связаны тонкими нитями. Эти структуры называются политенами, характеными для клеток плаценты.

МЕЙОЗ

Мейоз - это такое деление, при котором в дочерних клетках оказывается половинный (гаплоидный) набор хромосом - 1n и 1с. Такое деление имеет место в процессе образования половых клеток.

Рассмотрим процесс образования половых клеток в мужском организме, называемый сперматогенезом. Сперматогенез включает 4 периода: 1) период размножения; 2) период роста, или период профазы; 3) период созревания, который состоит из двух стадий: 1-го деления созревания и 2-го деления созревания и 4) периода формирования. (этот период мы рассматривать не будем).

Период размножения. Размножающиеся (делящиеся) клетки в периоде размножения называются сперматогониями. Сперматогонии при делении претерпевают все фазы, характерные для митотического деления, т. е. после деления материнской (стволовой) сперматогонии образуются 2 дочерних сперматогонии с набором хромосом 2n и набором ДНК 2с, затем эти сперматогонии проходят весь клеточный цикл и к предстоящему новому делению у них будет 4n и 4с. Вот эти сперматогонии - с 4n и 4с - вступают во 2-й период сперматогенеза - период роста , или период профазы 1-го деления мейоза. С этого момента клетки называются сперматоцитами 1-го порядка.

Период роста. В процессе развития сперматоцитов 1-го порядка имеют место 5 фаз: лептотена, зиготена (синаптена), пахитена, диплотена и диакинез.

Лептотена характеризуется активной спирализацией хромосом ядра, которые становятся видимыми, напоминающими тонкие нити. Затем наступает зиготена (синаптена). Во время зиготены гомологичные хромосомы приближаются друг к другу и соединяются вместе, образуя бивалент. В каждом биваленте образуются 2 центральные хроматиды (прилежат друг к другу) и 2 периферические. Затем плечи центральных хроматид начинают перекрещиваться и обмениваться генами (кросенговер). После завершения обмена генами каждая из 4 хроматид бивалента отличается друг от друга по составу генетического материала, т. е. каждая из хромосом бивалента состоит не из сестринских ( 2-х генетически одинаковых), а из совершенно разных хроматид, одновременно с этим бивалент - из генетически разных 4-х хроматид. Поэтому материнские хромосомы принято называть диадами, бывшие сестринские хроматиды, входящие в их состав - монадами, а весь бивалент - тетрадой. После зиготены начинается пахитена, в результате которой диады (бывшие материнские хромосомы бивалента) еще больше спирализуются, укорачиваются и утолщаются. Между монадами появляется заметная щель. После этого наступает диплотена, во время которой диады начинают удаляться друг от друга, но все еще близко прилежат друг к другу. Потом наступает диакинез, во время которого происходит дальнейшая спирализация монад каждой из 23 тетрад.

Таким образом, в ядре сперматоцита 1-го порядка в конце профазы содержится 23 тетрады, или 46 диад, или 92 монады. Затем клетка вступает в 1-е деление созревания.

Период созревания. 1-е деление созревания начинается с метафазы. В метафазе в материнской звезде будет 23 тетрады. Тетрады выстраиваются в плоскости экватора таким образом, что одна половинка тетрады обращена к одному полюсу клетки, вторая - к другому. Во время анафазы, половинки тетрад, называемые диадами, расходятся к полюсам. Затем в результате телофазы из сперматоцита 1-го порядка образуются 2 новых клетки, называемые сперматоцитами 2-го порядка. В каждом сперматоците 2го порядка будет по 23 диады или 46 монад (2n). Сперматоциты 2-го порядка, минуя период S, период G2 и профазу, сразу вступают в метафазу 2-го деления созревания. В материнской звезде сперматоцита 2-го порядка будет 23 диады, котрые выстраиваются в плоскости экватора таким образом, что одна половинка диады обращена к одному, вторая - к другому полюсу. Эти половинки называются монадами. Во время анафазы, дочерние звезды, состоящие из монад, расходятся к полюсам. Во время телофазы 2-го деления созревания образуются 2 новые клетки, называемые сперматидами. В сперматидах будет гаплоидный набор хромосом (1n).

Строение митотических хромосом. Митотические хромосомы появляются в период митоза. Они особенно хорошо видны во время метафазы и анафазы. Во время метафазы видно, что каждая материнская хромосома состоит из двух сестринских хромосом, или хроматид. Каждая хромосома состоит из одной молекулы ДНК, которая уложена особым образом и приобретает характерную форму. В каждой хромосоме есть первичная перетяжка, или центромер. Участки хромосомы, отходящие от первичной перетяжки, называются плечами хромосомы. Если плечи хромосомы имеют одинаковую или примерно одинаковую длину, то такая хромосома называются метоцентрической; если плечи хромосом явно неодинаковой длины, то такая хромосома называется субметоцентрической; если одно плечо явно многократно длиннее другого, то такая хромосома называется акроцентрической. Концы плеч хромосом называются теломерами. Кроме первичной перетяжки в некоторых хромосомах есть вторичные перетяжки. Вторичная перетяжка - это ядрышковый организатор. Участок плеча хромосомы между вторичной перетяжкой и теломером, называется спутником (сателлитом). Набор хромосом в ядре человека составляет кариотип. Чем характеризуется кариотип? Кариотип характеризуется количеством, размерами и особенностями строения хромосм.

Все хромосомы ядра человека разделяются на 7 групп, которые обозначаются буквами латинского алфавита от A до G. В каждой группе хромосомы морфологически похожи друг на друга, но хромосомы разных групп отличаются. Чтобы различить хромосомы друг от друга в одной группе применяется метод дифференцированного окрашивания. При дифференцированном окрашивании на плечах хромосом появляются светлые и темные полосы. Причем рисунок, образованный этими полосами, для каждой хромосомы индивидуален как отпечатки пальцев человека. Поэтому благодаря дифференцированному окрашиванию можно отличить хромосомы друг от друга.

РЕАКЦИЯ КЛЕТКИ НА ВНЕШНИЕ ВОЗДЕЙСТВИЯ

При воздействии неблагоприятных внешних химических, физических и биологических факторов на клетку, в ней возникают структурные и функциональные нарушения. В зависимости от интенсивности, продолжительности и характера воздействия такая клетка может либо адаптироваться к новым условиям и возвратиться в исходное состояние, либо погибнуть.

Изменения в цитоплазме поврежденной клетки. Цитоплазма утрачивает способность к гранулообразованию. В нормальной клетке частицы краски, поступившие в ее цитоплазму, заключаются в гранулы. Цитоплазма и кариоплазма при этом остаются светлыми. При утрате способности к гранулообразованию гранулы не образуются, а цитоплазма и кариоплазма диффузно окрашиваются.

Изменения в ядре. В ядре начинается отек перинуклеарного пространства, его расширение. Хроматин конденсируется в грубые глыбки, коагулируется. Это называется пикнозом. Нарушается регуляция белкового синтеза. В дальнейшем ядро разрывается на фрагменты. Это называется кариорексисом. В конечном итоге ядро подвергается лизису - кариолизис.

Изменения митохондрий. На начальном этапе митохондрии сжимаются, затем набухают, округляются, их кристы укорачиваются и редуцируются, снижается синтез АТФ. В конечном итоге мембраны митохондрий разрываются, матрикс смешивается с гиалоплазмой.

Изменения ЭПС. Цистерны гранулярной ЭПС фрагментируются и распадаются на вакуоли. Количество рибосом на поверхности мембран уменьшается, синтез белка снижается.

Изменения комплекса Гольджи. Комплекс Гольджи может подвергнуться распаду в результате фрагментации его цистерн.

Изменения лизосом. Количество первичных лизосом и автофагосом возрастает. Мембраны первичных лизосом разрываются. Выделившиеся из них ферменты осуществляют самопериваривание (лизис) клетки.

В результате нарушения проницаемости клеточных мембран, структуры и функции органелл нарушается метаболизм клетки, что может сопровождаться накоплением в цитоплазме липидов (жировая дистрофия), гликогена (углеводная дистрофия) и белков (белковая дистрофия).

При слабой интенсивности и кратковременном воздействии повреждающих факторов цитофизиологические изменения клетки могут быть обратимыми. При этом в одних случаях структура и функция клетки полностью восстанавливаются. Такая клетка продолжает нормально функционировать. В других случаях цитофизиология клетки восстанавливается неполностью. После этого клетка в течение некоторого времени продолжает функционировать, но вскоре погибает без видимых причин.

Злокачественное перерождение клетки. В некоторых случаях в клетке нарушаются регуляторные процессы. Это может привести к нарушению ее дифференцировки, в основе которой лежат изменения в генах ДНК хромосом. В результате этого клетка приобретает относительную автономию, способность к безудержному делению, метастазированию. Вновь образовавшиеся дочерние клетки унаследуют вышеуказанные свойства. Опухоль начинает быстро расти.

НЕКРОЗ И АПОПТОЗ КЛЕТКИ

Некроз клетки происходит в процессе ее незапрограммированной гибели и наблюдается после ее повреждения. При этом нарушается проницаемость клеточных мембран, расширяются компартменты, повреждается структура и нарушается функция ЭПС, комплекса Гольджи, митохондрий, увеличивается количество аутофагосом и в конечном итоге все завершается лизисом клетки.

Апоптоз клетки - это запрогаммированная гибель клетки. Такая гибель клетки связана с тем, что в ДНК хромосом имеются гены, в которых закодирована программа гибели клетки. Эта программа запускается в двух случаях: 1) при воздействии на клетку некоторых белков или гормонов; 2) если на клетку не поступают регулирующие сигналы.

При воздействи на клетку некоторых белков или гормонов в ее цитоплазме синтезируется сигнальная молекула (цАМФ или кальмодулин), котрая запускает программу гибели клетки. Пример: глюкокортикоиды коры надпочечников при их повышенном содержании в крови захватываются рецепторами наружной мембраны кариолеммы лимфоцита и через сигнальную молекулу запускают программу саморазрушения клетки.

При отсутствии регулирующих функцию клетки сигналов тоже синтезируется сигнальная молекула, которая активирует ген, содержащий программу гибели клетки. Примеры: 1) в семеннике вырабатываются сигналы, регулирующие функции клеток предстательной железы; если кастрировать самца, то прекращается поступление регулирующих сигналов, что сопровождается саморазрушением клеток предстательной железы; 2) в гипофизе вырабатываются гормоны, регулирующие развитие и функцию желтого тела яичников; когда же прекращается выделение этих гормонов из гипофиза, начинается саморазрушение клеток желтого тела, в результате чего оно полностью исчезает.

Характер изменений в клетке при апоптозе. После активации генов саморазрушения клетки начинается разделение ДНК хромосом на нуклеосомные фрагменты. Хроматин ядра конденсируется, образуются грубые глыбки хроматина, прилежащие к нуклеолемме. Ядро распадается на фрагменты - микроядра. Каждое такое ядро окружено нуклеолеммой. Вместе с этим фрагментируется и цитоплазма с последующим образованием микроклеток - апоптических телец, в состав которых входят микроядра. Апоптические тельца затем фагоцитируются макрофагами или подвергаются лизису.