Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2471

.pdf
Скачиваний:
13
Добавлен:
07.01.2021
Размер:
10.92 Mб
Скачать

РАСЧЕТ СИСТЕМ И МЕХАНИЗМОВ

ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

МАТЕМАТИЧЕСКИМИ МЕТОДАМИ

b

A F(x)dx

a

Омск 2011

103

Министерство образования и науки РФ ГОУ ВПО «Сибирская государственная автомобильно-дорожная

академия (СибАДИ)»

РАСЧЕТ СИСТЕМ И МЕХАНИЗМОВ

ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

МАТЕМАТИЧЕСКИМИ МЕТОДАМИ

Учебное пособие

Под редакцией Ю.П. Макушева

Омск

СибАДИ

2011

104

УДК 621.43, 51-7 ББК 31.365.22.11

М 17

Авторы: Ю.П. Макушев, Т.А. Полякова, Л.Ю. Михайлова, А.В. Филатов

Рецензенты:

д-р техн. наук, проф. В.В. Шалай (ОмГТУ); д-р техн. наук, проф. А.И. Володин (ОмГУПС);

канд. физ.-мат. наук, ст. пр. Т.А. Щербинина (ОмГТУ)

Работа одобрена редакционно-издательским советом академии в качестве учебного пособия при изучении дисциплин «Динамика двигателей», «Системы двигателей» для студентов специальности «Двигатели внутреннего сгорания».

Учебное пособие одобрено кафедрой «Высшая математика» СибАДИ и рекомендуется для студентов технических специальностей вузов.

М 17 Расчет систем и механизмов двигателей внутреннего сгорания мате-

матическими методами: учебное пособие / Ю.П. Макушев, Т.А. Полякова, Л.Ю. Михайлова и др.; под ред. Ю.П. Макушева. Омск: СибАДИ, 2011. 284 с.

Учебное пособие состоит из двух частей. В первой части приведены основы дифференциального и интегрального исчисления функции одной действительной переменной. Дано понятие производной как скорости изменения процесса, приведены примеры расчетов. Рассмотрены дифференциальные уравнения и показано их применение при решении технических задач.

Во второй части учебного пособия содержатся расчеты систем двигателей с применением интегральных и дифференциальных уравнений.

Типовые задачи, их пояснение и решение с использованием интегрального и дифференциального исчисления могут быть полезны студентам младших курсов, изучающих математику. Связь со специальными дисциплинами повышает интерес к математике. На старших курсах, полученные знания по дисциплине «Высшая математика», становятся прикладными при изучении дисциплин «Теоретическая механика», «Механика жидкости и газа», «Термодинамика», «Теория рабочих процессов в двигателях внутреннего сгорания», «Динамика двигателей», «Системы двигателей», «Агрегаты наддува двигателей».

Каждая глава завершается перечнем вопросов для самоконтроля, что позволяет читателю проверить степень усвоения изучаемого материала.

Учебное пособие предназначено для студентов специальности 140501 «Двигатели внутреннего сгорания», 190601 «Автомобили и автомобильное хозяйство» и может быть полезно для студентов других технических специальностей, а также инженерам и аспирантам.

Табл. 22. Ил. 97. Прил. 3. Библиогр.: 43 назв.

ГОУ «СибАДИ», 2011

105

ОГЛАВЛЕНИЕ

 

Введение.............................................................................................................

6

1. Основы дифференциального исчисления функции одной действи-

 

тельной переменной .........................................................................................

9

1.1. Понятие производной функции .................................................................

9

1.1.1. Физический и геометрический смысл производной..............................

17

1.1.2. Основные правила дифференцирования.................................................

31

1.1.3 Производная сложной функции...............................................................

32

1.1.4. Производная обратной функции.............................................................

33

1.1.5. Производная неявно заданной функции.................................................

35

1.1.6. Производные функций, заданных параметрически ...............................

37

1.2. Производные высших порядков.................................................................

38

1.2.1. Производные высших порядков явно заданной функции......................

38

1.2.2. Производные высших порядков неявно заданной функции..................

41

1.2.3. Производные высших порядков функций, заданных параметрически.

42

1.3. Дифференциал ............................................................................................

44

1.3.1. Геометрический и механический смысл дифференциала......................

48

1.3.2. Свойства дифференциала........................................................................

49

1.3.3. Дифференциал сложной функции...........................................................

50

1.3.4. Дифференциалы высших порядков.........................................................

51

2. Основы интегрального исчисления функции одной действительной

 

переменной.........................................................................................................

53

2.1. Неопределенный интеграл .........................................................................

54

2.2. Определенный интеграл.............................................................................

60

2.2.1. Свойства определенного интеграла........................................................

61

2.2.2. Вычисление определенного интеграла...................................................

62

2.3. Приложения определенного интеграла .....................................................

64

2.3.1. Физические приложения определенного интеграла...............................

65

2.3.2. Геометрические приложения определенного интеграла........................

71

3. Дифференциальные уравнения ..................................................................

80

3.1. Понятие дифференциального уравнения...................................................

80

3.2. Дифференциальные уравнения первого порядка......................................

83

3.2.1. Дифференциальные уравнения с разделяющимися переменными .......

84

3.2.2. Линейные дифференциальные уравнения первого порядка..................

86

3.3. Дифференциальные уравнения высших порядков (линейные диффе-

 

ренциальные уравнения высших порядков с постоянными коэффициента-

 

ми) ......................................................................................................................

90

3.3.1. Линейные однородные дифференциальные уравнения n-го порядка с

 

постоянными коэффициентами ........................................................................

91

3.3.2. Линейные неоднородные дифференциальные уравнения n-го поряд-

 

ка с постоянными коэффициентами.................................................................

94

4. Определение скорости и ускорения поршня с помощью

 

производных......................................................................................................

103

4.1. Определение пути поршня.........................................................................

104

106

4.2. Определение скорости поршня..................................................................

106

4.3. Определение ускорения поршня................................................................

108

4.4. Приближенные вычисления пути, скорости и ускорения поршня...........

112

5. Расчетное и экспериментальное определение давления в цилиндре и

 

диагностика двигателя по индикаторной диаграмме .................................

115

5.1. Основные термины и определения............................................................

115

5.2. Общее устройство и принцип работы двигателя внутреннего сгора-

 

ния......................................................................................................................

116

5.2.1. Четырехтактный рабочий цикл...............................................................

118

5.2.2. Индикаторная диаграмма двигателя.......................................................

119

5.3. Методика построения индикаторной диаграммы и определение поло-

 

жительной работы при помощи интегрирования.............................................

120

5.4. Экспериментальное определение давления газов в цилиндре двигателя

128

5.5. Диагностика двигателя по анализу индикаторной диаграммы ................

130

5.6. Расчет процесса сгорания топлива.............................................................

131

6. Определение момента инерции элементов коленчатого вала................

135

6.1. Расчетно-экспериментальное определение момента инерции части ко-

 

ленчатого вала ...................................................................................................

136

6.2. Расчетное определение момента инерции элементов коленчатого вала.137

7. Определение момента инерции маховика.................................................

141

7.1. Расчетно-экспериментальное определение момента инерции маховика.142

7.2. Расчетное определение момента инерции маховика ................................

143

8. Расчет маховика............................................................................................

145

8.1. Определение момента инерции маховика по результатам динамиче-

 

ского расчета двигателя ....................................................................................

145

8.2. Пример расчета маховика...........................................................................

150

9. Расчет коленчатого вала двигателя на крутильные колебания............

152

9.1. Свободные крутильные колебания вала с одной массой..........................

152

9.2. Вынужденные крутильные колебания вала с одной массой ....................

156

9.3. Последовательность расчета коленчатого вала на крутильные колебания...

158

9.3.1. Приведение крутильной системы вала...................................................

159

9.3.2. Определение частоты собственных крутильных колебаний приве-

 

денной системы .................................................................................................

160

9.3.3. Определение резонансной критической частоты вращения..................

161

9.3.4. Выработка рекомендаций, устраняющих крутильные колебания.........

163

10. Методика построения дифференциальной и интегральной характе-

 

ристик подачи топлива....................................................................................

165

10.1. Расчет цикловой подачи топлива и выбор эффективного проходного

 

сечения распылителя.........................................................................................

165

10.2. Методика построения дифференциальной характеристики подачи то-

 

плива...................................................................................................................

167

10.3. Расчет при помощи современной вычислительной техники диффе-

 

ренциальной характеристики впрыскивания...................................................

172

10.4. Формы дифференциальной характеристики впрыскивания...................

173

10.5. Построение интегральной характеристики впрыскивания.....................

177

107

11. Расчет параметров струи дизельного топлива .......................................

179

11.1. Расчет мелкости распыливания жидкого топлива...................................

179

11.2. Определение формы распыленного топливного факела при впрыске в

 

неподвижную среду...........................................................................................

186

12. Расчет центробежного компрессора и центростремительной

 

турбины..............................................................................................................

190

12.1. Методика расчёта центробежного компрессора с радиальными ло-

 

патками...............................................................................................................

190

12.2. Расчёт радиально-осевой турбины...........................................................

199

13. Основы расчета и выбора теплообменных аппаратов..........................

208

13.1. Основные формулы, используемые при расчете теплообменных ап-

 

паратов...............................................................................................................

208

13.2. Выбор основных параметров теплообменника типа «труба в трубе»....

213

13.3. Пример расчета теплообменного аппарата типа «труба в трубе»..........

217

14. Гидравлический расчет трубопроводов и насосной установки...........

221

14.1. Основные расчетные формулы ................................................................

221

14.2. Насосная установка...................................................................................

227

14.3. Совмещенная характеристика насоса и трубопровода...........................

231

14.4. Регулирование режимов работы насоса...................................................

232

14.5. Выбор основных параметров центробежного насоса .............................

234

14.6. Пример расчета колеса центробежного насоса.......................................

239

15. Истечение жидкости...................................................................................

244

15.1. Истечение жидкости через отверстия......................................................

244

15.2. Истечение жидкости через насадки.........................................................

246

15.3. Истечение жидкости при переменном напоре.........................................

247

15.4. Принцип работы простейшего карбюратора...........................................

251

15.5. Расчет простейшего карбюратора............................................................

253

16. Устройство, принцип действия и основы расчета двигателя внеш-

 

него сгорания.....................................................................................................

257

16.1. Идеальный цикл Стирлинга.....................................................................

257

16.2. Основные формулы, описывающие протекание процессов цикла дви-

 

гателя Стирлинга...............................................................................................

260

16.3. Принцип действия двигателя Стирлинга.................................................

262

16.4. Схема работы двигателя Стирлинга с кривошипно-шатунным меха-

 

низмом и его расчет...........................................................................................

264

Приложения.......................................................................................................

272

Библиографический список ............................................................................

281

108

ВВЕДЕНИЕ

Надежность, долговечность, экономичность и экологические показатели современных тепловых двигателей зависят от выбранной схемы кривошипно-шатунного механизма, равномерности хода, уравновешенности, величины крутильных колебаний, способа подачи топлива, управления процессом сгорания.

Современный двигатель не может быть создан без точных расчетов всех его систем, механизмов, узлов, деталей. Расчеты выполняются с использованием теоретических и практических знаний, полученных по многим специальным дисциплинам с применением матема-

тических методов.

Первые три главы пособия посвящены основным вопросам дифференциального и интегрального исчисления функции одной действительной переменной.

Дифференциальное исчисление раздел математики, в котором изучаются способы вычисления производных, дифференциалов и их применение к исследованию свойств функций.

Интегральное исчисление раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения (определения работы, площади, объемов). Именно с созданием дифференциального и интегрального исчисления связывают возникновение «высшей математики». С их появлением получен аппарат, позволяющий анализировать различные процессы, что важно для объяснения физических явлений и построения научной картины мира.

Без помощи производных и интегралов практически невозможно исследовать функции, характеризующие зависимость одних величин от других. Законы природы и техники можно описать с использованием производных и интегралов. Например, соотношения между пройденным расстоянием и скоростью движения, уравнением кривой и площадью под этой кривой представляют собой те конкретные вопросы, на основе которых сложились дифференциальное и интегральное исчисления. Понятия производной и интеграла применимы не только к перечисленным вопросам, но и к самым различным областям науки и техники. В качестве примера следует назвать исследование горения топлива в цилиндрах двигателей внутреннего сгорания, колебательные процессы в механических, гидравлических и электрических системах.

109

Производная, интеграл, теорема Ньютона − Лейбница связаны между собой и представляют определённый язык, приспособленный для описания различных законов природы и техники.

Важными для конструктора являются знания, приобретенные по физике, термодинамике, теории рабочих процессов, теоретической механике, материаловедению, сопротивлению материалов, динамике и другим дисциплинам.

Анализ процессов сгорания углеводородных топлив в цилиндре двигателя производится на основе термодинамики. Превращение химической энергии топлива в механическую происходит в результате осуществления рабочего цикла, представляющего собой законченную совокупность физических и химических процессов, периодически повторяющихся в цилиндрах двигателя.

Моделями первого теоретического приближения рабочих циклов двигателей являются циклы с изохорным, изобарным и смешанным подводом теплоты. Сгорание топлива в камерах необходимо для создания давления в цилиндре и происходит при высокой температуре (выше 2000 К), а это требует охлаждения двигателя и расчета теплообменных аппаратов.

Поступательное движение основных деталей двигателя (поршня, плунжера насоса высокого давления, впускных и выпускных клапанов) ограничены размерами кривошипа, шатуна, формой и размерами кулачка. При определении пути указанных деталей необходимо учитывать конструктивные особенности данных узлов.

Для преобразования поступательного движения поршня в цилиндре во вращательное движение коленчатого вала служит кривошипношатунный механизм (КШМ). Этот механизм является главным для двигателя.

Все процессы в работающем двигателе переменны. При движении поршня в цилиндре изменяется во времени его скорость и ускорение. Изменение скорости и ускорения поршня по времени определяются при помощи производных.

Динамика изучает движение деталей КШМ под действием давления газов и сил инерции. Динамический расчет двигателя позволяет определить силы и моменты в деталях КШМ, что необходимо при расчете их на прочность.

Важным для двигателя является его равномерность хода, плавное движение с места. Указанные параметры двигателя зависят от пра-

110

вильного расчета и выбора размеров, массы маховика. Методика расчета маховика и пример расчета приведены в данном учебном пособии.

По данным теплового расчета двигателя построена индикаторная диаграмма. Линии сжатия и расширения на ней определялись при использовании «текущей» величины сжатия и степени расширения. Расчет индикаторной работы цикла осуществлялся с использованием

определенного интеграла.

Качество процесса подачи топлива оценивалось дифференциальной и интегральной характеристиками. В работе приведена методика их построения и показан расчет на электронных вычислительных машинах (ЭВМ). Дан расчет мелкости распыливания топлива.

Для расчета коленчатого вала на крутильные колебания необходимо иметь значение моментов инерции вала и маховика. В учебном пособии дано их определение. Приведены дифференциальные уравнения свободных и вынужденных крутильных колебаний вала с одной массой, дано их решение.

Представлены гидравлические расчеты трубопроводов (каналов) систем двигателя, дана методика расчета центробежного насоса. При определении времени вытекания жидкости через отверстие из резервуара при переменном напоре использовалось интегральное исчис-

ление.

Двигатели внутреннего сгорания вырабатывают более 60 % энергии, используемой человеком (транспорт, сельское хозяйство, строительство, энергетика, добыча нефти, газа). Любая машина (транспортная, воздушная, морская, строительная, дорожная) в своем составе имеет двигатель. В данном учебном пособии предложена методика расчета систем и механизмов двигателей внутреннего сгорания при помощи математических методов. Пособие может быть полезно студентам любой технической специальности, которые изучают дисциплину «Высшая математика».

В учебном пособии приведены материалы по расчету систем и механизмов тепловых двигателей с использованием интегрального и дифференциального исчисления.

Целью учебного пособия является формирование знаний у студентов специальности 140501 «Двигатели внутреннего сгорания» по дисциплине «Высшая математика» и ее приложение при проектировании, расчете двигателей, его систем, механизмов.

111

1. ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИИ ОДНОЙ ДЕЙСТВИТЕЛЬНОЙ ПЕРЕМЕННОЙ

1.1.Понятие производной функции

Впроцессе решения задач, возникающих в физике, химии, технике, достаточно часто приходится сталкиваться с зависимостями одних величин от других, с так называемыми функциональными зависимостями (функциями). Функциональная зависимость одной величины у от другой величины х означает, что каждому значению х соответствует определенное значение у. Величина х при этом называется

независимой переменной (аргументом), а у зависимой перемен-

ной (функцией). В переводе с латинского функция означает «исполнение». Функция является одним из основных математических поня-

тий.

Обозначается функция следующим образом: y y x ; y f x .

Пусть функция y f (x) определена в некотором интервале a;b (рис. 1.1, а, б). Возьмем произвольную точку x0 a;b . Для любого

x a;b

разность x x0 называется приращением аргумента

x в

точке x0

и обозначается x (читается как «дельта икс»)

 

 

 

x x x0 .

(1.1)

Следовательно,

x x0 x (см. рис. 1.1, а, б). Обозначение

x0 a;b означает,

что точка х0 принадлежит интервалу a;b .

 

а)

б)

Рис. 1.1. Приращение аргумента и приращение функции

112

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]