Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы к экзамену по почвоведению ПАЭ.docx
Скачиваний:
87
Добавлен:
15.06.2020
Размер:
1.72 Mб
Скачать
  1. Причины утраты почвенной структуры и ее восстановление.

Причинами утраты структуры являются:

-механическое разрушение(вследствие обработки почвы,),

Механическое разрушение структуры происходит под влиянием обработки почвы, передвижения по ее поверхности машин и орудий, людей, животных, под ударами капель дождя.

Важнейшими путями уменьшения механического разрушения почвенной структуры является обработка почвы в состоянии ее спелости, а также минимализация обработки.

-физико – химические(реакциями обмена внутри почвы кальция и магния на натрий и аммоний.)

Физико-химические причины утраты структуры связаны с реакциями обмена двухвалентных катионов (кальция и магния) в ППК на одновалентные (натрий и аммоний).

При этом коллоиды (главным образом гумусовые вещества), прочно цементирующие механические элементы в агрегаты, пептизируются при увлажнении и структурные отдельности разрушаются. Поэтому приемы химической мелиорации почв (известкование, гипсование и др.), приводящие к обогащению ППК обменным кальцием, способствуют и улучшению структуры.

-биологические процессы(разложением гумусовых веществ почвенными микроорганизмами)

Биологические причины разрушения структуры связаны с процессами минерализации почвенного гумуса — главного клеящего вещества при образовании структуры.

Восстановление и сохранение структуры — непременное условие ведения земледелия. Существуют приемы, способствующие восстановлению почвенной структуры.

К химическим приемам относят известкование кислых почв и гипсование солонцов. В результате известкования почва становится более структурной, в ней увеличивается водопроницаемость и уменьшается плотность.

Известкованные почвы отличаются более благоприятными физико-механическими свойствами.

Гипсование устраняет щелочную реакцию солонцовых почв, улучшает их физические свойства и структурное состояние. Однако применением известкования и гипсования нельзя полностью решить проблему улучшения физико-механических свойств и структуры почвы.

Биологические приемы направлены на повышение содержания органического вещества (гумуса) в почве. Эти приемы универсальны и долговечны. С увеличением содержания гумуса в почве улучшаются не только физико-механические и химические свойства, но и все почвенные режимы: пищевой, водный, воздушный.

Искусственное оструктуривание почв осуществляется введением в них небольшого количества структурообразующих веществ, по преимуществу органических соединений (П. В. Вершинин).

  1. Состояние воды в почве и силы его определяющие.

В почве вода находится в трех состояниях: твердом, жидком и парообразном.

Твердая вода (лёд) потенциальный источник жидкой и парообразной влаги, в которую дед превращается в результате таяния и испарения. Промерзание почвы может иметь сезонный или многолетний характер.

Разновидность твердой воды по физическому состоянию химически связанная вода. Она представлена ОН- группой, входящей в состав гидроксидов железа, алюминия, марганца; органических и органо-минеральных соединений; глинистых минералов, а также целыми молекулами воды кристаллогидратов солей (гипса — СаSО4 × 2H2O, мирабилита — Na2 SО4 × 10H2O, хлорида магния — МgCl2 × 6H2O и др.). Химически связанная вода входит в состав твердой фазы почвы. Она неподвижна, не имеет растворяющей способности и недоступна растениям. Такая вода играет важную роль в засоленных почвах. Например, в тяжелоглинистых загипсованных солончаках на долю химически связанной воды может приходиться до 25 % от массы почвы.

Парообразная вода содержится в почвенном воздухе порового пространства в виде водяного пара. Пары воды поступают в почву из атмосферы и постоянно образуются в самой почве при испарении жидкой воды. Поэтому относительная влажность почвенного воздуха всегда близка к 100% и даже небольшое понижение температуры почвы ведет к конденсации пара и переходу парообразной влаги в жидкую. При повышении температуры происходит обратный процесс.

Жидкая вода—это особая, весьма активная система, в которой протекают многие физические и химические природные процессы. Жидкая вода состоит из рыхлоассоциированных молекул с ясно выраженными дипольными свойствами, что имеет большое значение для взаимодействия ее с твердой фазой почвы.

Вода — эффективный растворитель многих химических соединений и мощная транспортная система, благодаря которой происходит перемещение веществ в ландшафтах.

Парообразная и жидкая вода, поступающая в почву, подвергаются воздействию различных сил: сорбционных, капиллярных, гравитационных и осмотических. Эти силы могут существенно изменить свойства воды, уменьшить или увеличить ее подвижность, а соответственно и доступность растениям.

Сорбционные силы обусловлены свободной поверхностной энергией, присущей почвенным частицам и воде. Благодаря этой энергии почвенные частицы способны притягивать к себе дипольные молекулы воды.

Такой процесс называется сорбционным (сорбцией), а само явление — гидратацией. Благодаря этому явлению вокруг ионов и коллоидных частиц может образоваться водная оболочка

Капиллярные силы, их еще называют менисковыми, обусловлены поверхностным натяжением воды и явлениями смачивания.

На поверхности воды существует своеобразная пленка, обладающая поверхностным натяжением и определенным количеством свободной энергии.

Благодаря этой свободной энергии вода может смачивать поверхность большинства тел. Явление смачивания вызывает образование вогнутого мениска, т. е. искривление поверхности жидкости у стенок сосуда, в который она заключена.

Образование вогнутого мениска ведет к уменьшению поверхностного давления и соответственно к поднятию воды по капиллярам.

Менисковые, или капиллярные, силы начинают проявляться в порах диаметром менее 8 мм.

Наибольшей капиллярной силой обладают поры размером от 100 до 3 мкм. Гранулометрический состав почв и грунтов влияет на высоту капиллярного поднятия воды.

Благодаря воде, передвигающейся под действием капиллярных сил, в засушливые периоды года может происходить пополнение запасов влаги в пахотном горизонте почвы, а также перемещение водорастворимых солей, коллоидов, тонких суспензий из нижних горизонтов в верхние.

Осмотическое давление. Влага, которая находится в почве, при взаимодействии с ее твердой и газообразной фазами, корнями растений и живыми организмами обогащается различными водорастворимыми соединениями и превращается в почвенный раствор.

Этот раствор вследствие взаимного притяжения растворенного вещества и молекул воды обладает определенным осмотическим давлением.

В почве осмотическое давление возникает при взаимодействии воды и обменных ионов, а также в тех случаях, когда почвенный раствор имеет неодинаковую концентрацию в его различных частях.

Благодаря осмотическим силам вода в почвенной толще способна передвигаться от участков с низкой концентрацией к участкам с большей концентрацией. При этом способность раствора с большей концентрацией притягивать к себе молекулы воды из раствора с меньшей концентрацией иногда называют всасывающим давлением раствора.

Под действием гравитационных сил свободная влага, находящаяся в крупных порах, может передвигаться из верхних горизонтов в нижние и уходить за пределы почвенного профиля.

Для оценки совокупного действия сил, под влиянием которых вода находится в почве, введено понятие «потенциал почвенной влаги». Он характеризует энергию, с которой почва удерживает воду.

Если почва полностью насыщена водой и не содержит солей, то потенциал ее влаги равен нулю. С уменьшением влажности значение данного показателя возрастает и почва приобретает способность поглощать чистую воду. Такая способность почвы называется ее сосущей силой.

Величина этой силы у сухих почв может достигать 10 тыс. атм.

Вода в почве подвергается воздействию различных сил и характеризуется различной подвижностью и соответственно неодинаковыми свойствами и доступностью растениям, поэтому ее принято делить на категории и формы.