
- •Scada-пакеты в асутп: назначение, выполняемые функции
- •Scada как часть системы автоматического управления
- •Хранение истории процесса
- •Безопасность scada
- •Автоматический регулятор. Классификация регуляторов. П-, и-, пи-, пид- регулятор.
- •Активные и пассивные фильтры: схемы, передаточные функции.
- •4. Амплитудно – частотные характеристики усилителей.
- •5. Аналитическое представление логической функции по заданной таблице состояния (истинности).
- •6. Базовые логические функции. Таблицы истинности. Аналитическое представление. Условное графическое обозначение элементов, реализующих эти функции.
- •7. Виды обеспечения асутп.
- •8. Входные и выходные статические характеристики транзисторов.
- •9. Выпрямители. Основные схемы
- •10. Генераторные измерительные преобразователи: вращающиеся трансформаторы (синусно-косинусные вт, симметрирование вт, линейные вт).
- •11. Генераторные измерительные преобразователи: пьезоэлектрические датчики.
- •12. Генераторные измерительные преобразователи: сельсины.
- •13. Генераторные измерительные преобразователи: Тахогенераторы.
- •14. Генераторные измерительные преобразователи:Термопара.
- •15. Генераторные измерительные преобразователи:Ултразвуковые датчики.
- •16. Генераторные измерительные преобразователи:Фотоэлектрические датчики
- •17. Генераторы электрических сигналов.
- •18. Датчики тока и напряжение основанные на эффекте холла Принцип работы датчика Холла
- •19. Диффузионный и дрейфовый токи.
- •20. Зонная структура полупроводников и диэлектриков
- •Возможные варианты зонной структуры твердого тела с учетом заполнения зон:
- •21.Избирательные усилители
- •22.Исполнительные дпт:конструкция,принцип действия
- •23.Исполнительные дпт:пуск и способы регулирования
- •Пуск двигателя введением на время в цепь якоря добавочного сопротивления
- •Ограничение тока короткого замыкания за счет снижения напряжения при пуске
- •24.Исполнительные однофазные ад:конструкция,принцип действия
- •25.Исполнительные сд:конструкция,принцип действия.
- •26.Исполнительные трехфазные ад:конструкция,принцип действия
- •27.Исполнительные трехфазные ад:пуск и способы регулирования
- •28.Исполнительные шаговые двигатели с постоянными магнитами.
- •29.Исполнительные шаговые двигатели.
- •Шаговые синхронные двигатели активного типа
- •Реактивные шаговые двигатели
- •Линейные шаговые двигатели
- •Режим работы синхронного шагового двигателя
- •30. Классификация измерительных преобразователей
- •31. Классификация объектов управления.
- •32. Классификация сау
- •33. Логические переменные
- •34. Магнитные усилители.
- •35. Методика анализа технологического процесса как объекта управления.
- •36. Методы расчета параметров настроек регуляторов.
- •37. Микроконтроллеры.
- •38. Микропроцессорные системы.
- •39. Минимизация логических функций. Цель минимизации, аналитические соотношения и тождества алгебры логики. Рассмотреть пример.
- •40. Общие сведения об асу тп.
- •41. Операционные усилители.
- •42. Основные параметры электронных усилителей.
- •43. Основные принципы системного анализа.
- •44. Основные функциональные части автоматизированных систем.
- •45. Основные характеристики и черты автоматизированных систем.
- •46. Основополагающие принципы современных автоматизированных систем.
- •1. Принцип системного подхода.
- •10. Принцип согласованности пропускных способностей различных элементов системы.
- •47. Параметрические и компенсационные стабилизаторы.
- •48. Емкостные датчики.
- •49. Индуктивные датчики.
- •50. Потенциометрические датчики.
- •51.Тензорезисторные датчики.
- •52. Терморезисторные датчики.
- •53. Электромагнитные датчики. Делятся на:
- •54. Параметры биполярных транзисторов
- •Основные физические параметры:
- •55. Параметры импульсных сигналов.
- •56. Передача информации в асутп: последовательный интерфейс rs-232c
- •Передача информации в асутп: последовательные интерфейсы rs-485, rs-422
- •57.Позиционные системы счисления: десятичная, двоичная, восмиричная, шестнадцатиричная. Представление чисел, перевод чисел из одной системы в другую. Двоично-десятичная форма.
- •58. Полупроводниковые диоды. Основные типы диодов
- •59. Принципы действия и основные схемы включения биполярных транзисторов
- •61. Принципиальные эл схемы
- •62. Структурные и функциональные схемы
- •63.Согласующие элементы.Устройства Гальванической развязки
- •64.Фазовый детектор
- •65. Состав элементов и устройств типовой сау.
- •66. Статические и динамические характеристики статических и астатических объектов.
- •1) Диф. Уравнения во t:
- •67. Структурное соединение звеньев.
- •68. Промышленные сети.
- •69. Типовые законы регулирования
- •70. Типовые звенья сау
- •71. Тиристоры.
- •72. Трансформаторы
- •73. Униполярные
- •Типы цап
- •Характеристики
- •Разрешение
- •Типы преобразования
- •Линейные ацп
- •Нелинейные ацп
- •Точность
- •Ошибки квантования
- •Нелинейность
- •Частота дискретизации
- •76.Элекромеханические усилители-реле.
- •У стройство
- •Классификация реле
- •Обозначение на схемах
- •Особенности работы
- •77. Электронно-дырочный переход. Прямое и обратное включение.
- •78. Элементы с памятью-Триггеры
- •2) Синхронизированные r,s-триггеры.
- •79. Гсп приборов и средств автоматизации
- •80. Языки программирования мэк
Реактивные шаговые двигатели
У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.
Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.
О
тличительной
особенностью реактивного редукторного
двигателя является расположение зубцов
на полюсах статора.
При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.
Величина углового шага редукторного реактивного шагового двигателя определится выражением:
αш=360/КтZр
В выражении для KT величину n2 следует брать равной 1, т.к. изменение направления поля не влияет на положение ротора.
Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.
Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.
Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают.
Линейные шаговые двигатели
Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение.
Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.
Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнито-провода ротора сдвинуты на половину зубцового деления t/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления t/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.
Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя. Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС, которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления t/4.
ΔXш=tz/Кt
где Kt — число тактов схемы управления.
Режим работы синхронного шагового двигателя
Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.
Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода следующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0.
П
ри
этом возможны колебания углового вала
двигателя относительно установившегося
значения. Эти колебания обусловлены
запасом кинетической энергии, которая
была накоплена валом двигателя при
отработке угла. Кинетическая энергия
преобразуется в потери: механические,
магнитные и электрические. Чем больше
величина перечисленных потерь, тем
быстрее заканчивается переходный
процесс отработки единичного шага
двигателем.
В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.
Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.
П
редельная
механическая характеристика — это
зависимость максимального синхронизирующего
момента от частоты управляющих импульсов.
П
риемистость
— это наибольшая частота управляющих
импульсов, при которой не происходит
потери или добавления шага при их
отработке. Она является основным
показателем переходного режима шагового
двигателя. Приемистость растет с
увеличением синхронизирующего момента,
а также с уменьшением шага, момента
инерции вращающихся (или линейно
перемещаемых) частей и статического
момента сопротивления.
Приемистость падает с увеличением нагрузки.